A ridge regression estimation approach to the measurement error model

被引:22
|
作者
Saleh, A. K. Md Ehsanes [1 ]
Shalabh [2 ]
机构
[1] Carleton Univ, Ottawa, ON K1S 5B6, Canada
[2] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Linear regression model; Measurement error; Multicollinearity; Reliability matrix; Ridge regression estimators; Shrinkage estimation; Stein type estimators; Preliminary test estimator; PARAMETERS; TESTS;
D O I
10.1016/j.jmva.2013.08.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the estimation of the parameters of measurement error models where the estimated covariance matrix of the regression parameters is ill conditioned. We consider the Hoerl and Kennard type (1970) ridge regression (RR) modifications of the five quasi-empirical Bayes estimators of the regression parameters of a measurement error model when it is suspected that the parameters may belong to a linear subspace. The modifications are based on the estimated covariance matrix of the estimators of regression parameters. The estimators are compared and the dominance conditions as well as the regions of optimality of the proposed estimators are determined based on quadratic risks. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:68 / 84
页数:17
相关论文
共 50 条
  • [1] Corrigendum to "Ridge regression estimation approach to measurement error model" (vol 123, pg 68, 2014)
    Saleh, A. K. Md. Ehsanes
    Shalabh
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 127 : 214 - 214
  • [2] Estimation in Weibull regression model with measurement error
    Gimenez, P
    Bolfarine, H
    Colosimo, EA
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1999, 28 (02) : 495 - 510
  • [3] SIMEX estimation for quantile regression model with measurement error
    Yang, Yiping
    Zhao, Peixin
    Wu, Dongsheng
    STATISTICS AND ITS INTERFACE, 2023, 16 (01) : 545 - 552
  • [4] Restricted estimation in multivariate measurement error regression model
    Jain, Kanchan
    Singh, Sukhbir
    Sharma, Suresh
    JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (02) : 264 - 280
  • [5] Estimation of error variance via ridge regression
    Liu, X.
    Zheng, S.
    Feng, X.
    BIOMETRIKA, 2020, 107 (02) : 481 - 488
  • [6] Performance of Ridge Regression Approach in Linear Measurement Error Models with Replicated Data
    Ziaei, A. R.
    Zare, K.
    Sheikhi, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (04)
  • [7] A mixed model approach to measurement error in semiparametric regression
    Hattab, Mohammad W.
    Ruppert, David
    STATISTICS AND COMPUTING, 2021, 31 (03)
  • [8] A mixed model approach to measurement error in semiparametric regression
    Mohammad W. Hattab
    David Ruppert
    Statistics and Computing, 2021, 31
  • [9] Ridge estimation of a semiparametric regression model
    Hu, HC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (01) : 215 - 222
  • [10] Estimation of sparse functional quantile regression with measurement error: a SIMEX approach
    Tekwe, Carmen D.
    Zhang, Mengli
    Carroll, Raymond J.
    Luan, Yuanyuan
    Xue, Lan
    Zoh, Roger S.
    Carter, Stephen J.
    Allison, David B.
    Geraci, Marco
    BIOSTATISTICS, 2022, 23 (04) : 1218 - 1241