C-projective symmetries of submanifolds in quaternionic geometry

被引:0
|
作者
Borowka, Aleksandra [1 ]
Winther, Henrik [2 ]
机构
[1] Jagiellonian Univ, Inst Math, PL-30348 Krakow, Poland
[2] Masaryk Univ, Fac Sci, Dept Math & Stat, Kotlarska 2, CS-61137 Brno, Czech Republic
关键词
c-projective structure; Quaternionic structure; Symmetries; Submaximally symmetric spaces; Calabi metric;
D O I
10.1007/s10455-018-9631-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized Feix-Kaledin construction shows that c-projective 2n-manifolds with curvature of type (1,1) are precisely the submanifolds of quaternionic 4n-manifolds which are fixed-point set of a special type of quaternionic circle action. In this paper, we consider this construction in the presence of infinitesimal symmetries of the two geometries. First, we prove that the submaximally symmetric c-projective model with type (1,1) curvature is a submanifold of a submaximally symmetric quaternionic model and show how this fits into the construction. We give conditions for when the c-projective symmetries extend from the fixed-point set of the circle action to quaternionic symmetries, and we study the quaternionic symmetries of the Calabi and Eguchi-Hanson hyperkahler structures, showing that in some cases all quaternionic symmetries are obtained in this way.
引用
收藏
页码:395 / 416
页数:22
相关论文
共 50 条
  • [31] Scalar curvature of QR-submanifolds with maximal QR-dimension in a quaternionic projective space
    Hyang Sook Kim
    Jin Suk Pak
    Indian Journal of Pure and Applied Mathematics, 2011, 42 : 109 - 126
  • [32] CHARACTERIZATIONS OF SOME RINGS WITH C-PROJECTIVE, C-(FP)-INJECTIVE AND C-FLAT MODULES
    Yan, Xiao Guang
    Zhu, Xiao Sheng
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (03) : 641 - 652
  • [33] Characterizations of some rings with C-projective, C-(FP)-injective and C-flat modules
    Xiao Guang Yan
    Xiao Sheng Zhu
    Czechoslovak Mathematical Journal, 2011, 61 : 641 - 652
  • [34] Curvature and the c-projective mobility of Kahler metrics with hamiltonian 2-forms
    Calderbank, David M. J.
    Matveev, Vladimir S.
    Rosemann, Stefan
    COMPOSITIO MATHEMATICA, 2016, 152 (08) : 1555 - 1575
  • [35] Auslander Class, G C , and C-projective Modules Modulo Exact Zero-divisors
    Amanzadeh, Ensiyeh
    Dibaei, Mohammad T.
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (10) : 4320 - 4333
  • [36] Biharmonic Submanifolds of Quaternionic Space Forms
    Kacimi, Bouazza
    Cherif, Ahmed Mohammed
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (04): : 771 - 781
  • [37] Slant submanifolds of quaternionic space forms
    Vilcu, Gabriel Eduard
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (3-4): : 397 - 413
  • [38] An Inequality on Quaternionic CR-Submanifolds
    Macsim, Gabriel
    Mihai, Adela
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2018, 26 (03): : 181 - 196
  • [39] Symmetries of the quaternionic Ginibre ensemble
    Dubach, Guillaume
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (01)
  • [40] Central projective quaternionic representations
    Scolarici, G
    Solombrino, L
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (12) : 8331 - 8338