C-projective symmetries of submanifolds in quaternionic geometry

被引:0
|
作者
Borowka, Aleksandra [1 ]
Winther, Henrik [2 ]
机构
[1] Jagiellonian Univ, Inst Math, PL-30348 Krakow, Poland
[2] Masaryk Univ, Fac Sci, Dept Math & Stat, Kotlarska 2, CS-61137 Brno, Czech Republic
关键词
c-projective structure; Quaternionic structure; Symmetries; Submaximally symmetric spaces; Calabi metric;
D O I
10.1007/s10455-018-9631-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized Feix-Kaledin construction shows that c-projective 2n-manifolds with curvature of type (1,1) are precisely the submanifolds of quaternionic 4n-manifolds which are fixed-point set of a special type of quaternionic circle action. In this paper, we consider this construction in the presence of infinitesimal symmetries of the two geometries. First, we prove that the submaximally symmetric c-projective model with type (1,1) curvature is a submanifold of a submaximally symmetric quaternionic model and show how this fits into the construction. We give conditions for when the c-projective symmetries extend from the fixed-point set of the circle action to quaternionic symmetries, and we study the quaternionic symmetries of the Calabi and Eguchi-Hanson hyperkahler structures, showing that in some cases all quaternionic symmetries are obtained in this way.
引用
收藏
页码:395 / 416
页数:22
相关论文
共 50 条
  • [1] C-projective symmetries of submanifolds in quaternionic geometry
    Aleksandra Borówka
    Henrik Winther
    Annals of Global Analysis and Geometry, 2019, 55 : 395 - 416
  • [2] C-Projective Geometry
    Calderbank, David M. J.
    Eastwood, Michael G.
    Matveev, Vladimir S.
    Neusser, Katharina
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 267 (1299) : I - +
  • [3] Geometry of solutions to the c-projective metrizability equation
    Keegan J. Flood
    A. Rod Gover
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 1343 - 1368
  • [4] Geometry of solutions to the c-projective metrizability equation
    Flood, Keegan J.
    Gover, A. Rod
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (03) : 1343 - 1368
  • [5] Biharmonic submanifolds of the quaternionic projective space
    Brandao, Clebes
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 206
  • [6] COMPLEXES OF C-PROJECTIVE MODULES
    Amanzadeh, E.
    Dibaei, M. T.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (04): : 949 - 958
  • [7] Conification construction for Kahler manifolds and its application in c-projective geometry
    Matveev, Vladimir S.
    Rosemann, Stefan
    ADVANCES IN MATHEMATICS, 2015, 274 : 1 - 38
  • [8] On submersion and immersion submanifolds of a quaternionic projective space
    Abedi, Esmail
    Nazari, Zahra
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (01) : 5 - 21
  • [9] PLANAR GEODESIC SUBMANIFOLDS IN A QUATERNIONIC PROJECTIVE-SPACE
    PAK, JS
    KANG, TH
    GEOMETRIAE DEDICATA, 1988, 26 (02) : 139 - 155
  • [10] Submaximally symmetric c-projective structures
    Kruglikov, Boris
    Matveev, Vladimir
    The, Dennis
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (03)