Particle dynamics in sheared particulate suspensions

被引:2
|
作者
Strybulevych, Anatoliy [1 ,2 ]
Norisuye, Tomohisa [2 ]
Hasselfield, Matthew [1 ,3 ]
Page, John H. [1 ]
机构
[1] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
[2] Kyoto Inst Technol, Grad Sch Sci & Technol, Dept Macromol Sci & Engn, Kyoto 6068585, Japan
[3] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA
基金
加拿大自然科学与工程研究理事会;
关键词
multiphase flow; particle technology; suspensions; granular temperature; dynamic sound scattering; DOPPLER VELOCIMETRY MEASUREMENTS; PRESSURE-DRIVEN FLOW; VELOCITY FLUCTUATIONS; CONCENTRATED SUSPENSIONS; ULTRASOUND SCATTERING; FLUIDIZED-BED; MIGRATION; SPECTROSCOPY; COUETTE; FIELD;
D O I
10.1002/aic.16431
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Measurements of particle dynamics of neutrally buoyant suspensions of non-Brownian glass beads in a Couette cell using dynamic sound scattering are reported. The dynamics were studied under steady shear flow across the entire gap between the stator and rotor for shear rates from 0.26 to 6.59s(-1) and particle concentrations from 20% to 50%, thereby enabling a comprehensive investigation of the dynamics to be carried out. The average particle velocity profile varies linearly with depth inside the cell for all shear rates and concentrations. The fluctuations in the particle velocities are large, indicating that the particles are not confined to streamlines but continue to fluctuate substantially during steady flow. Our data indicate that the fluctuations are anisotropic. The components of the velocity fluctuations (granular temperature) parallel to the flow and in the vertical direction are much larger than in the radial direction. The fluctuation anisotropy decreases as the concentration increases. (c) 2018 American Institute of Chemical Engineers AIChE J, 65: 840-849, 2019
引用
收藏
页码:840 / 849
页数:10
相关论文
共 50 条
  • [41] Particle dynamics modeling methods for colloid suspensions
    Dan S. Bolintineanu
    Gary S. Grest
    Jeremy B. Lechman
    Flint Pierce
    Steven J. Plimpton
    P. Randall Schunk
    Computational Particle Mechanics, 2014, 1 : 321 - 356
  • [42] SIMULATION OF SEMIDILUTE SUSPENSIONS BY DISSIPATIVE PARTICLE DYNAMICS
    Moshfegh, Abouzar
    Jabbarzadeh, Ahmad
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS V - VI, 2014, : 6098 - 6109
  • [43] Particle dynamics modeling methods for colloid suspensions
    Bolintineanu, Dan S.
    Grest, Gary S.
    Lechman, Jeremy B.
    Pierce, Flint
    Plimpton, Steven J.
    Schunk, P. Randall
    COMPUTATIONAL PARTICLE MECHANICS, 2014, 1 (03) : 321 - 356
  • [44] Heterogeneous Dynamics of Sheared Particle-Laden Fluid Interfaces with Janus Particle Doping
    Qiao, Yiming
    Liu, Zhengyang
    Ma, Xiaolei
    Keim, Nathan C.
    Cheng, Xiang
    LANGMUIR, 2023, 39 (34) : 12032 - 12040
  • [45] Flocculation in simulations of sheared fiber suspensions
    Switzer, LH
    Klingenberg, DJ
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2004, 30 (01) : 67 - 87
  • [46] POLYMER ADSORPTION AND FLOCCULATION IN SHEARED SUSPENSIONS
    GREGORY, J
    COLLOIDS AND SURFACES, 1988, 31 : 231 - 253
  • [47] BROWNIAN-MOTION IN SHEARED SUSPENSIONS
    VANDEVEN, TGM
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1983, 404 (MAY) : 365 - 366
  • [48] Microstructure and velocity fluctuations in sheared suspensions
    Drazer, G
    Koplik, J
    Khusid, B
    Acrivos, A
    JOURNAL OF FLUID MECHANICS, 2004, 511 : 237 - 263
  • [49] Consolidation of sheared, strongly flocculated suspensions
    Holmqvist, Claes
    Dahlkild, Anders
    AICHE JOURNAL, 2008, 54 (04) : 924 - 939
  • [50] Chaos and threshold for irreversibility in sheared suspensions
    Pine, DJ
    Gollub, JP
    Brady, JF
    Leshansky, AM
    NATURE, 2005, 438 (7070) : 997 - 1000