Particle dynamics in sheared particulate suspensions

被引:2
|
作者
Strybulevych, Anatoliy [1 ,2 ]
Norisuye, Tomohisa [2 ]
Hasselfield, Matthew [1 ,3 ]
Page, John H. [1 ]
机构
[1] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
[2] Kyoto Inst Technol, Grad Sch Sci & Technol, Dept Macromol Sci & Engn, Kyoto 6068585, Japan
[3] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA
基金
加拿大自然科学与工程研究理事会;
关键词
multiphase flow; particle technology; suspensions; granular temperature; dynamic sound scattering; DOPPLER VELOCIMETRY MEASUREMENTS; PRESSURE-DRIVEN FLOW; VELOCITY FLUCTUATIONS; CONCENTRATED SUSPENSIONS; ULTRASOUND SCATTERING; FLUIDIZED-BED; MIGRATION; SPECTROSCOPY; COUETTE; FIELD;
D O I
10.1002/aic.16431
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Measurements of particle dynamics of neutrally buoyant suspensions of non-Brownian glass beads in a Couette cell using dynamic sound scattering are reported. The dynamics were studied under steady shear flow across the entire gap between the stator and rotor for shear rates from 0.26 to 6.59s(-1) and particle concentrations from 20% to 50%, thereby enabling a comprehensive investigation of the dynamics to be carried out. The average particle velocity profile varies linearly with depth inside the cell for all shear rates and concentrations. The fluctuations in the particle velocities are large, indicating that the particles are not confined to streamlines but continue to fluctuate substantially during steady flow. Our data indicate that the fluctuations are anisotropic. The components of the velocity fluctuations (granular temperature) parallel to the flow and in the vertical direction are much larger than in the radial direction. The fluctuation anisotropy decreases as the concentration increases. (c) 2018 American Institute of Chemical Engineers AIChE J, 65: 840-849, 2019
引用
收藏
页码:840 / 849
页数:10
相关论文
共 50 条
  • [1] Dynamic sound scattering investigation of the dynamics of sheared particulate suspensions
    Strybulevych, Anatohy
    Norisuye, Tomohisa
    Hasselfield, Matthew
    Page, J. H.
    COMPLEX SYSTEMS-BOOK 1, 2008, 982 : 354 - +
  • [2] Stretching and mixing in sheared particulate suspensions
    Souzy, M.
    Lhuissier, H.
    Villermaux, E.
    Metzger, B.
    JOURNAL OF FLUID MECHANICS, 2017, 812 : 611 - 635
  • [3] Particle pressure in sheared Brownian suspensions
    Yurkovetsky, Yevgeny
    Morris, Jeffrey F.
    JOURNAL OF RHEOLOGY, 2008, 52 (01) : 141 - 164
  • [4] Particle segregation in monodisperse sheared suspensions
    Tirumkudulu, M
    Tripathi, A
    Acrivos, A
    PHYSICS OF FLUIDS, 1999, 11 (03) : 507 - 509
  • [5] Pair-particle dynamics and microstructure in sheared colloidal suspensions: Simulation and Smoluchowski theory
    Nazockdast, Ehssan
    Morris, Jeffrey F.
    PHYSICS OF FLUIDS, 2013, 25 (07)
  • [6] Dynamics of the solid and liquid phases in dilute sheared Brownian suspensions:: Irreversibility and particle migration
    Brown, Jennifer R.
    Seymour, Joseph D.
    Codd, Sarah L.
    Fridjonsson, Einar O.
    Cokelet, Giles R.
    Nyden, Magnus
    PHYSICAL REVIEW LETTERS, 2007, 99 (24)
  • [7] PARTICLE MOTIONS IN SHEARED SUSPENSIONS 20 - CIRCULAR CYLINDERS
    DARABANE.CL
    RAASCH, JK
    MASON, SG
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1967, 45 (01): : 3 - +
  • [8] PARTICLE MOTIONS IN SHEARED SUSPENSIONS .1. ROTATIONS
    TREVELYAN, BJ
    MASON, SG
    JOURNAL OF COLLOID SCIENCE, 1951, 6 (04): : 354 - 367
  • [9] Particle dynamics in sheared granular matter
    Losert, W
    Bocquet, L
    Lubensky, TC
    Gollub, JP
    PHYSICAL REVIEW LETTERS, 2000, 85 (07) : 1428 - 1431
  • [10] Coupled dynamics of flow, microstructure, and conductivity in sheared suspensions
    Olsen, Tyler
    Helal, Ahmed
    McKinley, Gareth H.
    Kamrin, Ken
    SOFT MATTER, 2016, 12 (36) : 7688 - 7697