EXISTENCE OF REGULAR SOLUTIONS TO AN ERICKSEN-LESLIE MODEL OF THE LIQUID CRYSTAL SYSTEM

被引:5
|
作者
Dai, Mimi [1 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
关键词
Liquid crystals; Parodi's relation; regularity; GLOBAL WEAK SOLUTION; ASYMPTOTIC-BEHAVIOR; VARIABLE DEGREE; FLOW;
D O I
10.4310/CMS.2015.v13.n7.a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a general Ericksen-Leslie system with non-constant density, which describes the flow of nematic liquid crystal. In particular the model investigated here is associated with Parodi's relation. We prove that in two dimension, the solutions are globally regular with general data, and in three dimension, the solutions are globally regular with small initial data or for a short time with large data. Moreover, a weak-strong type of uniqueness result is obtained.
引用
收藏
页码:1711 / 1740
页数:30
相关论文
共 50 条
  • [41] Interior regularity criterion for incompressible Ericksen-Leslie system
    Ma, Wenya
    Feng, Jiqiang
    BOUNDARY VALUE PROBLEMS, 2017,
  • [42] A Logarithmically Improved Blow-up Criterion for a Simplified Ericksen-Leslie System Modeling the Liquid Crystal Flows
    Bai Meng
    Liu Qiao
    Zhao Jihong
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2015, 28 (04): : 358 - 369
  • [43] Local and global solutions on arcs for the Ericksen-Leslie problem in RN
    Barbera, Daniele
    Georgiev, Vladimir
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (10) : 3584 - 3624
  • [44] Uniform regularity for an Ericksen-Leslie's parabolic-hyperbolic liquid crystals model
    Fan, Jishan
    Nakamura, Gen
    Tang, Tong
    APPLIED MATHEMATICS LETTERS, 2024, 154
  • [45] On well-posedness of Ericksen-Leslie's parabolic-hyperbolic liquid crystal model in compressible flow
    Jiang, Ning
    Luo, Yi-Long
    Tang, Shaojun
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (01): : 121 - 183
  • [46] Optimal Boundary Control of a Simplified Ericksen-Leslie System for Nematic Liquid Crystal Flows in 2D
    Cavaterra, Cecilia
    Rocca, Elisabetta
    Wu, Hao
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (03) : 1037 - 1086
  • [47] A NOTE ON THE STOCHASTIC ERICKSEN-LESLIE EQUATIONS FOR NEMATIC LIQUID CRYSTALS
    Brzeniak, Zdzislaw
    Hausenblas, Erika
    Razafimandimby, Paul Andre
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (11): : 5785 - 5802
  • [48] Zero inertia density limit for the hyperbolic system of Ericksen-Leslie's liquid crystal flow with a given velocity
    Jiang, Ning
    Luo, Yi-Long
    Tang, Shaojun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 590 - 608
  • [49] CONVERGENCE OF THE GINZBURG-LANDAU APPROXIMATION FOR THE ERICKSEN-LESLIE SYSTEM
    Feng, Zhewen
    Hong, Min-Chun
    Mei, Yu
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 481 - 523
  • [50] Investigation of Liquid Crystal Ripple Using Ericksen-Leslie Theory for Displays Subject to Tactile Force
    Lee, Y. J.
    Liu, T. S.
    Lin, Mao-Hsing
    Huang, Kun-Feng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013