Label-free quantitation of peptide release from neurons in a microfluidic device with mass spectrometry imaging

被引:50
|
作者
Zhong, Ming
Lee, Chang Young
Croushore, Callie A.
Sweedler, Jonathan V. [1 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
MALDI-TOF MS; LASER-DESORPTION/IONIZATION-TIME; BAG CELL NEURONS; CAPILLARY-ELECTROPHORESIS; NEUROENDOCRINE CELLS; GLYCOL) MONOLAYERS; HORMONE-SECRETION; HIGH-THROUGHPUT; SOLID-SURFACES; SINGLE-CELL;
D O I
10.1039/c2lc21085a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microfluidic technology allows the manipulation of mass-limited samples and when used with cultured cells, enables control of the extracellular microenvironment, making it well suited for studying neurons and their response to environmental perturbations. While matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) provides for off-line coupling to microfluidic devices for characterizing small-volume extracellular releasates, performing quantitative studies with MALDI is challenging. Here we describe a label-free absolute quantitation approach for microfluidic devices. We optimize device fabrication to prevent analyte losses before measurement and then incorporate a substrate that collects the analytes as they flow through a collection channel. Following collection, the channel is interrogated using MS imaging. Rather than quantifying the sample present via MS peak height, the length of the channel containing appreciable analyte signal is used as a measure of analyte amount. A linear relationship between peptide amount and band length is suggested by modeling the adsorption process and this relationship is validated using two neuropeptides, acidic peptide (AP) and alpha-bag cell peptide [1-9] (alpha BCP). The variance of length measurement, defined as the ratio of standard error to mean value, is as low as 3% between devices. The limit of detection (LOD) of our system is 600 fmol for AP and 400 fmol for alpha BCP. Using appropriate calibrations, we determined that an individual Aplysia bag cell neuron secretes 0.15 +/- 0.03 pmol of AP and 0.13 +/- 0.06 pmol of alpha BCP after being stimulated with elevated KCl. This quantitation approach is robust, does not require labeling, and is well suited for miniaturized off-line characterization from microfluidic devices.
引用
收藏
页码:2037 / 2045
页数:9
相关论文
共 50 条
  • [31] Coupling liquid chromatography/mass spectrometry detection with microfluidic droplet array for label-free enzyme inhibition assay
    Wang, Xiu-Li
    Zhu, Ying
    Fang, Qun
    [J]. ANALYST, 2014, 139 (01) : 191 - 197
  • [32] A microfluidic device for label-free, physical capture of circulating tumor cell clusters
    Sarioglu A.F.
    Aceto N.
    Kojic N.
    Donaldson M.C.
    Zeinali M.
    Hamza B.
    Engstrom A.
    Zhu H.
    Sundaresan T.K.
    Miyamoto D.T.
    Luo X.
    Bardia A.
    Wittner B.S.
    Ramaswamy S.
    Shioda T.
    Ting D.T.
    Stott S.L.
    Kapur R.
    Maheswaran S.
    Haber D.A.
    Toner M.
    [J]. Nature Methods, 2015, 12 (7) : 685 - 691
  • [33] Label-free protein detection using a microfluidic Coulter-counter device
    Rodriguez-Trujillo, Romen
    Ajine, Mohammad A.
    Orzan, Alice
    Mar, Mikkel D.
    Larsen, Flemming
    Clausen, Casper H.
    Svendsen, Winnie E.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2014, 190 : 922 - 927
  • [34] A microfluidic device for label-free, physical capture of circulating tumor cell clusters
    Sarioglu, A. Fatih
    Aceto, Nicola
    Kojic, Nikola
    Donaldson, Maria C.
    Zeinali, Mahnaz
    Hamza, Bashar
    Engstrom, Amanda
    Zhu, Huili
    Sundaresan, Tilak K.
    Miyamoto, David T.
    Luo, Xi
    Bardia, Aditya
    Wittner, Ben S.
    Ramaswamy, Sridhar
    Shioda, Toshi
    Ting, David T.
    Stott, Shannon L.
    Kapur, Ravi
    Maheswaran, Shyamala
    Haber, Daniel A.
    Toner, Mehmet
    [J]. NATURE METHODS, 2015, 12 (07) : 685 - +
  • [35] Label-Free Imaging of Mesenchymal Stem Cell Spheroid Differentiation with Flexible-Probe SECM and a Microfluidic Device
    Zhao, Liang
    Wang, Lin
    Huang, Jing
    Chen, Hongyu
    Liu, Lu
    Shi, Mi
    Zhang, Meiqin
    [J]. ANALYTICAL CHEMISTRY, 2024, 96 (33) : 13473 - 13481
  • [36] Probe for Label-free Quantitative Analysis in Liquid Chromatography/Mass Spectrometry
    Atsumu Hirabayashi
    Masafumi Furukawa
    Mitsuhiro Umeda
    Tomomi Bando
    Yoshimitsu Orii
    [J]. Analytical Sciences, 2009, 25 : 67 - 71
  • [37] Label-free quantification using MALDI mass spectrometry: considerations and perspectives
    Amelie S. Benk
    Christoph Roesli
    [J]. Analytical and Bioanalytical Chemistry, 2012, 404 : 1039 - 1056
  • [38] PROFILING MESENTERIC LYMPH IN A SHOCK MODEL BY LABEL-FREE MASS SPECTROMETRY
    Hansen, K.
    Moore, E.
    Zurawel, A.
    Peltz, E.
    Eun, J.
    Banerjee, A.
    [J]. SHOCK, 2009, 31 : 70 - 71
  • [39] Probe for Label-free Quantitative Analysis in Liquid Chromatography/Mass Spectrometry
    Hirabayashi, Atsumu
    Furukawa, Masafumi
    Umeda, Mitsuhiro
    Bando, Tomomi
    Orii, Yoshimitsu
    [J]. ANALYTICAL SCIENCES, 2009, 25 (01) : 67 - 71
  • [40] On the Reproducibility of Label-Free Quantitative Cross-Linking/Mass Spectrometry
    Mueller, Fraenze
    Fischer, Lutz
    Chen, Zhuo Angel
    Auchynnikava, Tania
    Rappsilber, Juri
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2018, 29 (02) : 405 - 412