On multivariate linear regression shrinkage and reduced-rank procedures

被引:4
|
作者
Reinsel, GC [1 ]
机构
[1] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
关键词
canonical correlation analysis; multivariate regression; prediction mean square error; reduced rank; shrinkage;
D O I
10.1016/S0378-3758(99)00016-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An alternate derivation of the canonical analysis shrinkage prediction procedure of Breiman and Friedman (1997. J. Roy. Statist. Sec. B 59, 3-54) is presented for the multivariate linear model. It is based on consideration of prediction mean square error matrix, and bias of the squared sample canonical correlations. A modified procedure involving partial canonical correlation analysis is also introduced and discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:311 / 321
页数:11
相关论文
共 50 条
  • [31] REDUCED-RANK REGRESSION AND CANONICAL-ANALYSIS
    TSO, MKS
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1981, 43 (02): : 183 - 189
  • [32] Sparse reduced-rank regression with covariance estimation
    Chen, Lisha
    Huang, Jianhua Z.
    STATISTICS AND COMPUTING, 2016, 26 (1-2) : 461 - 470
  • [33] Alternating DCA for reduced-rank multitask linear regression with covariance matrix estimation
    Hoai An Le Thi
    Vinh Thanh Ho
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2022, 90 (7-9) : 809 - 829
  • [34] Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models
    Bura, E.
    Duarte, S.
    Forzani, L.
    Smucler, E.
    Sued, M.
    STATISTICS, 2018, 52 (05) : 1005 - 1024
  • [35] On the degrees of freedom of reduced-rank estimators in multivariate regression (vol 102, pg 457, 2015)
    Mukherjee, A.
    Chen, K.
    Wang, N.
    Zhu, J.
    BIOMETRIKA, 2018, 105 (01) : 247 - 247
  • [36] Reduced-rank vector generalized linear models
    Yee, TW
    Hastle, TJ
    STATISTICAL MODELLING, 2003, 3 (01) : 15 - 41
  • [37] Multivariate reduced-rank nonlinear time series modeling
    Li, Ming-Chung
    Chan, Kung-Sik
    STATISTICA SINICA, 2007, 17 (01) : 139 - 159
  • [38] Performance of reduced-rank linear interference suppression
    Honig, ML
    Xiao, WM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) : 1928 - 1946
  • [39] Stability Approach to Regularization Selection for Reduced-Rank Regression
    Wen, Canhong
    Wang, Qin
    Jiang, Yuan
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 974 - 984
  • [40] Efficient Sparse Reduced-Rank Regression With Covariance Estimation
    Li, Fengpei
    Zhao, Ziping
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 46 - 50