Comparing the Optical Properties of Soft Contact Lenses On and Off the Eye

被引:23
|
作者
Kollbaum, Pete S. [1 ]
Bradley, Arthur [1 ]
Thibos, Larry N. [1 ]
机构
[1] Indiana Univ, Sch Optometry, Bloomington, IN 47405 USA
关键词
contact lens; spherical aberration; aspheric; flexure; supplemental power; SPHERICAL-ABERRATION; LOMB SOFLENS; ON-EYE; POWER; VALIDATION; THICKNESS; SYSTEMS; BAUSCH; RADIUS;
D O I
10.1097/01.opx.0000434275.93435.da
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose. The purpose of the current study was to examine the on- and off-eye optical performance of two types of soft contact lenses (hydrogel and silicone hydrogel). Methods. The monochromatic aberrations (lambda = 850 nm) of contact lenses were measured on-eye using a clinical Shack-Hartmann ocular aberrometer. In addition, we used an off-eye single-pass contact lens aberrometer (lambda = 540 nm) in which the soft contact lens was placed within a wet cell. Comparison of the lower and higher order aberrations measured with these two methods required compensation for different wavelengths and knowledge of the refractive index of the contact lens materials. Results. The measured on-eye sphere and spherical aberration values were generally similar to those measured off-eye and those specified by the lens manufacturers for both types of soft contact lenses. However, there were notable differences, especially for high plus-powered lenses, which typically exhibited lower sphere power on the eye than expected from the lens specifications and from the off-eye measured powers, both of which were almost identical. Longitudinal spherical aberration varied with lens power in the hydrogel lenses, as expected from geometric optics theory. Longitudinal spherical aberration measurements on- and off-eye, however, deviated significantly from that expected of a thin lens with spherical surfaces due to surface asphericities. The difference between on- and off-eye optics can be modeled as a tear lens or as relative lens thickness changes caused by lens flexure. Conclusions. The results of the current study reveal that the major difference between the on-eye lens optics and the manufacturers' specifications is not due to lens errors but due to eye-lens interactions, which could be either lens flexure or a tear lens forming behind the soft contact lens.
引用
收藏
页码:924 / 936
页数:13
相关论文
共 50 条
  • [31] SOFT CONTACT-LENSES IN THE TREATMENT OF FRESH EYE BURNS AND BURN AFTEREFFECTS
    ZELENSKAYA, MV
    BABICH, GA
    KIVAEV, AA
    BELFER, IM
    BORDYUGOVA, GG
    VESTNIK OFTALMOLOGII, 1986, (02) : 31 - 33
  • [32] SOFT CONTACT-LENSES
    不详
    PRACTITIONER, 1977, 219 (1309) : 11 - 11
  • [33] Micromechanical properties of nanostructured soft silicon hydrogel contact lenses
    Chyasnavichyus, Marius
    Young, Seth
    Tsukruk, Vladimir
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [34] SOFT HYDROPHILIC CONTACT LENSES
    JOHNSON, DG
    CANADIAN JOURNAL OF OPHTHALMOLOGY, 1971, 6 (04): : 342 - &
  • [35] SOFT CONTACT-LENSES
    不详
    BMJ-BRITISH MEDICAL JOURNAL, 1977, 2 (6088): : 655 - 656
  • [36] SOFT CONTACT-LENSES
    不详
    BMJ-BRITISH MEDICAL JOURNAL, 1976, 1 (6010): : 609 - 610
  • [37] SOFT CONTACT-LENSES
    不详
    BMJ-BRITISH MEDICAL JOURNAL, 1972, 3 (5821): : 254 - +
  • [38] SOFT CONTACT-LENSES
    CURTIS, FJ
    BRITISH MEDICAL JOURNAL, 1977, 2 (6095): : 1154 - 1154
  • [39] SOFT CONTACT-LENSES
    MORRISON, M
    FDA CONSUMER, 1976, 10 (06) : 23 - 25
  • [40] SOFT CONTACT-LENSES
    SUTHERLAND, RL
    VANLEEUWEN, WN
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 1972, 107 (01) : 49 - +