A class of quaternion valued affine projection algorithms

被引:33
|
作者
Jahanchahi, Cyrus [1 ]
Took, Clive Cheong [2 ]
Mandic, Danilo P. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Univ Surrey, Dept Comp, Surrey GU7 2XH, England
基金
英国工程与自然科学研究理事会;
关键词
Quaternion affine projection; Widely linear model; Improperness; Quaternion noncircularity; HR-calculus; Quaternion gradient; 3D wind modeling;
D O I
10.1016/j.sigpro.2012.12.019
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The strictly linear quaternion valued affine projection algorithm (QAPA) and its widely linear counterpart (WLQAPA) are introduced, in order to provide fast converging stochastic gradient learning in the quaternion domain, for the processing of both second order circular (proper) and second order noncircular (improper) signals. This is achieved based on the recent advances in augmented quaternion statistics, which employs all second order information available, together with the associated widely linear models and through performing rigorous gradient calculation (HR-calculus). Further, mean square error analysis is performed based on the energy conservation principle, which provides a theoretical justification for the WLQAPA offering enhanced steady state performance for quaternion noncircular (improper) signals, a typical case in real world scenarios. Simulations on benchmark circular and noncircular signals, and on noncircular real world 4D wind and 3D body motion data support the analysis. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1712 / 1723
页数:12
相关论文
共 50 条
  • [31] Affine projection algorithms based on sigmoid cost function
    Hou, Yunxian
    Li, Guoliang
    Zhang, Huaiyuan
    Wang, Gang
    Zhang, Hongbin
    Chen, Junjie
    SIGNAL PROCESSING, 2024, 219
  • [32] COMPLEX PROPORTIONATE-TYPE AFFINE PROJECTION ALGORITHMS
    Wagner, Kevin T.
    Doroslovacki, Milos I.
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 1510 - 1514
  • [33] Spherical subspace and eigen based affine projection algorithms
    DeGroat, RD
    Begusic, D
    Dowling, EM
    Linebarger, DA
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 2345 - 2348
  • [34] Set-Membership Proportionate Affine Projection Algorithms
    Werner, Stefan
    Apolinario, Jose A., Jr.
    Diniz, Paulo S. R.
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2007, 2007 (1)
  • [35] Time-Variant Regularization In Affine Projection Algorithms
    Ba, Amadou
    McKenna, Sean
    2013 51ST ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2013, : 1466 - 1473
  • [36] Pseudo-optimal regularization for affine projection algorithms
    Myllylä, V
    Schmidt, G
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 1917 - 1920
  • [37] Set-Membership Proportionate Affine Projection Algorithms
    Stefan Werner
    José A Apolinário
    Paulo S R Diniz
    EURASIP Journal on Audio, Speech, and Music Processing, 2007
  • [38] New Variable Step Size Affine Projection Algorithms
    Albu, Felix
    Paleologu, Constantin
    Ciochina, Silviu
    2012 9TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS (COMM), 2012, : 63 - 66
  • [39] Short-time special affine Fourier transform for quaternion-valued functions
    H. M. Srivastava
    Firdous A. Shah
    Aajaz A. Teali
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [40] Short-time special affine Fourier transform for quaternion-valued functions
    Srivastava, H. M.
    Shah, Firdous A.
    Teali, Aajaz A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (02)