An integrated software system for analyzing ChIP-chip and ChIP-seq data

被引:532
|
作者
Ji, Hongkai [2 ]
Jiang, Hui [3 ]
Ma, Wenxiu [4 ]
Johnson, David S. [5 ]
Myers, Richard M. [6 ]
Wong, Wing H. [1 ,7 ]
机构
[1] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
[3] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[5] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA
[6] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA
[7] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nbt.1505
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We present CisGenome, a software system for analyzing genome-wide chromatin immunoprecipitation (hIP) data. CisGenome is designed to meet all basic needs of ChIP data analyses, including visualization, data normalization, peak detection, false discovery rate computation, gene-peak association, and sequence and motif analysis. In addition to implementing previously published ChIP-microarray (ChIP-chip) analysis methods, the software contains statistical methods designed specifically for ChlP sequencing (ChIP-seq) data obtained by coupling ChIP with massively parallel sequencing. The modular design of CisGenome enables it to support interactive analyses through a graphic user interface as well as customized batch-mode computation for advanced data mining. A built-in browser allows visualization of array images, signals, gene structure, conservation, and DNA sequence and motif information. We demonstrate the use of these tools by a comparative analysis of ChIP-chip and ChIP-seq data for the transcription factor NRSF/REST, a study of ChIP-seq analysis with or without a negative control sample, and an analysis of a new motif in Nanog- and Sox2-binding regions.
引用
收藏
页码:1293 / 1300
页数:8
相关论文
共 50 条
  • [31] seqMINER: an integrated ChIP-seq data interpretation platform
    Ye, Tao
    Krebs, Arnaud R.
    Choukrallah, Mohamed-Amin
    Keime, Celine
    Plewniak, Frederic
    Davidson, Irwin
    Tora, Laszlo
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 (06) : e35
  • [32] Python in ChIP-Seq data analysis
    Zhang, Li
    Hu, Yuansen
    Wang, Jinshui
    Zhang, Guangle
    [J]. Journal of Chemical and Pharmaceutical Research, 2014, 6 (03) : 1002 - 1007
  • [33] Normalization of ChIP-seq data with control
    Liang, Kun
    Keles, Sunduz
    [J]. BMC BIOINFORMATICS, 2012, 13
  • [34] Normalization of ChIP-seq data with control
    Kun Liang
    Sündüz Keleş
    [J]. BMC Bioinformatics, 13
  • [35] A decade of ChIP-seq
    Marinov, Georgi K.
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (02) : 77 - 79
  • [36] ChIP-chip: Data, model, and analysis
    Zheng, Ming
    Barrera, Leah O.
    Ren, Bing
    Wu, Ying Nian
    [J]. BIOMETRICS, 2007, 63 (03) : 787 - 796
  • [37] ChIP-AP: an integrated analysis pipeline for unbiased ChIP-seq analysis
    Suryatenggara, Jeremiah
    Yong, Kol Jia
    Tenen, Danielle E.
    Tenen, Daniel G.
    Bassal, Mahmoud A.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [38] Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data
    Carroll, Thomas S.
    Liang, Ziwei
    Salama, Rafik
    Stark, Rory
    de Santiago, Ines
    [J]. FRONTIERS IN GENETICS, 2014, 5
  • [39] CHANCE: comprehensive software for quality control and validation of ChIP-seq data
    Diaz, Aaron
    Nellore, Abhinav
    Song, Jun S.
    [J]. GENOME BIOLOGY, 2012, 13 (10):
  • [40] CHANCE: comprehensive software for quality control and validation of ChIP-seq data
    Aaron Diaz
    Abhinav Nellore
    Jun S Song
    [J]. Genome Biology, 13