INTEGRATED PIEZOELECTRIC AND THERMOELECTRIC SENSING AND ENERGY CONVERSION

被引:0
|
作者
Gamboa, Bryan [1 ]
Estrada, Maximilian [1 ,2 ]
Djikeng, Albert [1 ]
Nsek, Daniel [1 ,2 ]
Binzaid, Shuza [1 ]
Dessouky, Samer [3 ]
Bhalla, Amar S. [1 ,2 ]
Guo, Ruyan [1 ,2 ]
机构
[1] Univ Texas San Antonio, Dept Elect & Comp Engn, Multifunct Elect Mat & Devices Res Lab, San Antonio, TX 78249 USA
[2] Univ Texas San Antonio, Interdisciplinary Grad Program Adv Mat Engn, San Antonio, TX 78249 USA
[3] Univ Texas San Antonio, Dept Civil & Environm Engn, San Antonio, TX 78249 USA
关键词
D O I
暂无
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An integrative approach is carried out utilizing piezoelectric and thermoelectric device sciences, computational modeling and engineering design/testing. Numerical FEA simulation is used extensively to guide the frequency dependent transducer design, device fabrication and power electronics conversion. The research is to develop modular hybrid integrated sensing and energy conversion (HISEC) unit with optimized energy density and power efficiency. While electric power converted from roadways by a single unit (occupying an area of less than 0.1 m(2)) using piezoelectric or thermoelectric mechanism alone, is considered intermittent or inadequate for intended applications, the energy conversion integrations make it possible to have complementary and parallel modes of energy-harvesting from roadways to have a self-sustained power source that supports sensing and data transmission functions. The evaluation and testing results obtained validated the design concept and are the base for further optimizations. The HISEC module developed is independent of the power grid and with on-demand data monitoring and information transmitting capabilities, thus could play an enabling role in applications such as smart-roadways and smart-cities.
引用
收藏
页码:15 / 22
页数:8
相关论文
共 50 条
  • [31] Thermoelectric effects in ion conducting membranes and perspectives for thermoelectric energy conversion
    Sandbakk, K. D.
    Bentien, A.
    Kjelstrup, S.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2013, 434 : 10 - 17
  • [32] <bold>Thermoelectric Energy Conversion in Nanostructures</bold>
    Chen, Gang
    Dames, Chris
    Henry, Asegun
    [J]. 2006 INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2006, : 282 - +
  • [33] SOME PHYSICAL FEATURES OF THERMOELECTRIC ENERGY CONVERSION
    MORGULIS, ND
    KORCHEVO.YP
    CHUTOV, YI
    [J]. SOVIET PHYSICS-TECHNICAL PHYSICS, 1962, 6 (07): : 611 - +
  • [34] Thermoelectric energy conversion technology lab.
    [J]. 2000, Electrotechnical Laboratory (64):
  • [35] Efficient thermoelectric energy conversion in SnTe and GeTe
    Biswas, Kanishka
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [36] Thermoelectric energy conversion using nanostructured materials
    Chen, Gang
    Kraemer, Daniel
    Muto, Andrew
    McEnaney, Kenneth
    Feng, Hsien-Ping
    Liu, Wei-Shu
    Zhang, Qian
    Yu, Bo
    Ren, Zhifeng
    [J]. MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS III, 2011, 8031
  • [37] Energy conversion using new thermoelectric generator
    Savelli, G.
    Plissonnier, M.
    Bablet, J.
    Salvi, C.
    Fournier, J. M.
    [J]. DTIP 2006: SYMPOSIUM ON DESIGN,TEST, INTEGRATION AND PACKAGING OF MEMS/MOEMS 2006, 2006, : 369 - +
  • [38] Nanowire silicon as a material for thermoelectric energy conversion
    Stranz, A.
    Kaehler, J.
    Merzsch, S.
    Waag, A.
    Peiner, E.
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2012, 18 (7-8): : 857 - 862
  • [39] Porous Thermoelectric Materials for Energy Conversion by Thermoelectrocatalysis
    Wu, Jiaqi
    Chen, Kan
    Reece, Michael J.
    Huang, Zhaorong
    [J]. ENERGY TECHNOLOGY, 2024,
  • [40] A Special Forum Issue on Thermoelectric Energy Conversion
    Meyer, Gerald J.
    Biswas, Kanishka
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (03) : 2037 - 2038