An inexact optimization model for distributed multi-energy systems management in sustainable airports

被引:3
|
作者
Jin, Shuwei [1 ]
Li, Yongping [2 ,3 ]
Yu, Lei [4 ]
机构
[1] Civil Aviat Univ China, Sch Gen Aviat, Tianiin 300300, Peoples R China
[2] Beijing Normal Univ, Sch Environm, Beijing, Peoples R China
[3] Univ Regina, Inst Energy Environm & Sustainable Communities, Regina, SK, Canada
[4] Zhengzhou Univ, Sch Water Conservancy Engn, Zhengzhou 450001, Peoples R China
关键词
distributed energy resource; multi‐ energy; optimization model; sustainable airports; uncertainty;
D O I
10.1002/er.6634
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes a fuzzy chance-constrained fractional programming (FCFP) method for planning distributed multi-energy systems (DMES). FCFP can deal with uncertainties expressed as fuzzy information, probability distributions, and multiple objectives. The FCFP-DMES model was applied to a real airport in a case study, and a series of scenarios were selected to examine the effects of the uncertainty on the energy supply and technology selection. Additionally, a comparison related to conventional energy system (CES) and DMES are discussed from energy consumption, economic, and environmental aspects. The results revealed the following: the combined cooling, heat, and power would serve as a primary distributed energy resource providing heating, cooling, and electricity in different seasons, accounting for approximately 40% of the total; among different alternative technologies, heating supplied by gas-fired boiler and thermal storage would serve as auxiliary heaters to cover 6.6% and 15.2% of the heating load, respectively, under high-level demand; although the DMES cannot bring cost-cutting, it has better environmental performance and a peak shaving function. Compared with the DMES, the CES would almost double the electricity purchasing cost (reaching $9.56 million), and an additional 136.24 MW of electricity would be needed, which would result in 127.5 tons/year of pollutant emissions. The findings of this study indicate that the FCFP-DMES model can provide a comprehensive and systematic strategy considering the multi-energy, multi-technology, and multi-uncertainty within the DMES.
引用
收藏
页码:13071 / 13087
页数:17
相关论文
共 50 条
  • [41] Energy Management of Multi-Energy Storage Systems Using Energy Path Decomposition
    Aznavi, Sima
    Fajri, Poria
    Asrari, Arash
    Sabzehgar, Reza
    2019 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2019, : 5747 - 5752
  • [42] Energy Management and Optimization of Multi-energy Grid Based on Deep Reinforcement Learning
    Liu J.
    Chen J.
    Wang X.
    Zeng J.
    Huang Q.
    Dianwang Jishu/Power System Technology, 2020, 44 (10): : 3794 - 3803
  • [43] Multi-Energy Load Collaborative Optimization of the Active Building Energy Management Strategy
    Wang, Min
    Gao, Hang
    Pan, Dongqian
    Sheng, Xiangyu
    Xu, Chunxing
    Wang, Qiming
    ENERGIES, 2024, 17 (11)
  • [44] A review of multi-energy system planning and optimization tools for sustainable urban development
    van Beuzekom, I.
    Gibescu, M.
    Slootweg, J. G.
    2015 IEEE EINDHOVEN POWERTECH, 2015,
  • [45] Demand side management for a residential customer in multi-energy systems
    Sheikhi, Aras
    Rayati, Mohammad
    Ranjbar, Ali Mohammad
    SUSTAINABLE CITIES AND SOCIETY, 2016, 22 : 63 - 77
  • [46] Cyber-Resilient Multi-Energy Management for Complex Systems
    Zhao, Pengfei
    Cao, Zhidong
    Zeng, Dajun
    Gu, Chenghong
    Wang, Zhaoyu
    Xiang, Yue
    Qadrdan, Meysam
    Chen, Xinlei
    Yan, Xiaohe
    Li, Shuangqi
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 2144 - 2159
  • [47] An Optimal Energy Management Method for the Multi-Energy System with Various Multi-Energy Applications
    Wang, Yangzi
    Zhang, Kai
    Zheng, Chun
    Chen, Huiyuan
    APPLIED SCIENCES-BASEL, 2018, 8 (11):
  • [48] Modeling and optimization of collaborative computing in regional multi-energy systems for energy Internet
    Peng, Yuhuai
    Wang, Jing
    Hu, Chunyang
    Song, Yang
    Li, Qiming
    Sivaraman, Audithan
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2023, 39
  • [49] Optimization of Distributed Integrated Multi-energy System Considering Industrial Process Based on Energy Hub
    Yizhi Zhang
    Xiaojun Wang
    Jinghan He
    Yin Xu
    Wei Pei
    Journal of Modern Power Systems and Clean Energy, 2020, 8 (05) : 863 - 873
  • [50] Optimization of Distributed Integrated Multi-energy System Considering Industrial Process Based on Energy Hub
    Zhang, Yizhi
    Wang, Xiaojun
    He, Jinghan
    Xu, Yin
    Pei, Wei
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2020, 8 (05) : 863 - 873