Estimating sparse models from multivariate discrete data via transformed Lasso

被引:0
|
作者
Roos, Teemu [1 ]
Yu, Bin [2 ]
机构
[1] Univ Helsinki, HIIT, FIN-00014 Helsinki, Finland
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
基金
芬兰科学院;
关键词
REGRESSION; SELECTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The type of l(1) norm regularization used in Lasso and related methods typically yields sparse parameter estimates where most of the estimates are equal to zero. We study a class of estimators obtained by applying a linear transformation on the parameter vector before evaluating the l(1) norm. The resulting "transformed Lasso" yields estimates that are "smooth" in a way that depends on the applied transformation. The optimization problem is convex and can be solved efficiently using existing tools. We present two examples: the Haar transform which corresponds to variable length Markov chain (context-tree) models, and the Walsh-Hadamard transform which corresponds to linear combinations of XOR (parity) functions of binary input features.
引用
收藏
页码:287 / +
页数:2
相关论文
共 50 条
  • [21] Modelling and estimating heterogeneous variances in threshold models for ordinal discrete data via Winbugs/Openbugs
    Foulley, Jean-Louis
    Jaffrezic, Florence
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2010, 97 (01) : 19 - 27
  • [22] Estimating flexible route choice models using sparse data
    Oshyani, Masoud Fadaei
    Sundberg, Marcus
    Karlstrom, Anders
    2012 15TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2012, : 1215 - 1220
  • [23] A Comparison of Bayesian Methods for Estimating of Multivariate Models with Censored Data
    Bruha, Jan
    MATHEMATICAL METHODS IN ECONOMICS (MME 2014), 2014, : 67 - 72
  • [24] Estimating Travel Speed via Sparse Vehicular Crowdsensing Data
    Wang, Cheng
    Zhang, Zhenzhen
    Shao, Lu
    Zhou, MengChu
    2016 IEEE 3RD WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2016, : 643 - 648
  • [25] Identifying Appropriate Probabilistic Models for Sparse Discrete Omics Data
    Aldirawi, Hani
    Yang, Jie
    Metwally, Ahmed A.
    2019 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2019,
  • [26] Evaluating simulation-based approaches and multivariate quadrature on sparse grids in estimating multivariate binary probit models
    Abay, Kibrom A.
    ECONOMICS LETTERS, 2015, 126 : 51 - 56
  • [27] Storing sparse and repeated data in multivariate markovian models of tuberculosis spread
    Bielefeld, RA
    Debanne, SM
    Rowland, DY
    COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (02): : 85 - 92
  • [28] Analyzing market basket data through sparse multivariate logit models
    Hruschka, Harald
    JOURNAL OF MARKETING ANALYTICS, 2024,
  • [29] Multiple Change-Points Estimation in Linear Regression Models via Sparse Group Lasso
    Zhang, Bingwen
    Geng, Jun
    Lai, Lifeng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (09) : 2209 - 2224
  • [30] Dynamic Multivariate Functional Data Modeling via Sparse Subspace Learning
    Zhang, Chen
    Yan, Hao
    Lee, Seungho
    Shi, Jianjun
    TECHNOMETRICS, 2021, 63 (03) : 370 - 383