Sandwich-type theorems for a class of integral operators

被引:11
|
作者
Bulboaca, Teodor [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
关键词
differential subordination; univalent function; starlike function; integral operator;
D O I
10.36045/bbms/1161350695
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H(U) be the space of all analytic functions in the unit disk U. For a given function h epsilon A we define the integral operator I-h;beta : K -> H(U), with K subset of H (U), by Ih;beta[f](z) = [beta integral(z)(0)f(beta)(t)h-1(t)h'(t)d t](1/beta), where beta epsilon C and all powers are the principal ones. We will determine sufficient conditions on g(1), g(2) and beta such that [zh'(z)/h(z)](1/beta) g(1)(z) < [zh'(z)/h(z)](1/beta) f(z) < [zh'(z)/h(z)](1/beta) g(2)(z) implies I-h;beta[g(1)](z) < I-h;beta[f](z) < Ih;beta[g(2)](z), where the symbol "<" stands for subordination. We will call such a kind of result a sandwich-type theorem. In addition, I-h;beta[g(1)] will be the largest function and I-h;beta[g1] the smallest function so that the left-hand side, respectively the right-hand side of the above implication hold, for all f functions satisfying the differential subordination, respectively the differential superordination of the assumption. We will give some particular cases of the main result obtained for appropriate choices of the h, that also generalize classic results of the theory of differential subordination and superordination. The concept of differential superordination was introduced by S. S. Miller and P. T. Mocanu in [5] like a dual problem of differential subordination [4].
引用
下载
收藏
页码:537 / 550
页数:14
相关论文
共 50 条
  • [31] Inequalities of Hardy type for a class of integral operators with measures
    Prokhorov D.V.
    Analysis Mathematica, 2007, 33 (3) : 199 - 225
  • [33] Joint test on a sandwich-type composite
    Carle, V
    Täffner, U
    Kopp, WU
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2005, 42 (02): : 89 - 99
  • [34] γ-Cyclodextrin Cuprate Sandwich-Type Complexes
    Bagabas, Abdulaziz A.
    Frasconi, Marco
    Iehl, Julien
    Hauser, Brad
    Farha, Omar K.
    Hupp, Joseph T.
    Hartlieb, Karel J.
    Botros, Youssry Y.
    Stoddart, J. Fraser
    INORGANIC CHEMISTRY, 2013, 52 (06) : 2854 - 2861
  • [35] Differential Superordinations and Sandwich-Type Results
    Bulboaca, Teodor
    Cho, Nak Eun
    Goswami, Pranay
    CURRENT TOPICS IN PURE AND COMPUTATIONAL COMPLEX ANALYSIS, 2014, : 109 - 146
  • [36] Fuglede-Putnam type theorems for extension of *-class A operators
    Rashid, Mohammad H. M.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 863 - 873
  • [37] BANACH-STEINHAUS TYPE THEOREMS FOR A CLASS OF NONLINEAR OPERATORS
    HETZER, G
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1974, 22 (11): : 1129 - 1137
  • [38] Paley-Wiener-type theorems for a class of integral transforms
    Tuan, VK
    Zayed, AI
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (01) : 200 - 226
  • [39] CERTAIN DIFFERENTIAL SANDWICH-TYPE RESULTS
    Billing, Sukhwinder Singh
    JOURNAL OF MATHEMATICAL ANALYSIS, 2011, 2 (01): : 8 - 17
  • [40] ON A CLASS OF INTEGRAL OPERATORS
    VERBLUNSKY, S
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 63 : 133 - +