The SU(N) self-dual sine-Gordon model and competing orders

被引:5
|
作者
Lecheminant, P.
Totsuka, K.
机构
[1] Univ Cergy Pontoise, CNRS, UMR 8089, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France
[2] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
关键词
bosonization; conformal field theory (theory); spin chains; ladders and planes (theory); spin liquids (theory);
D O I
10.1088/1742-5468/2006/12/L12001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate the low-energy properties of a generalized quantum sine-Gordon model in one dimension with a self-dual symmetry. This model describes a class of quantum phase transitions that stems from the competition of different orders. This SU(N) self-dual sine-Gordon model is shown to be equivalent to an SO(N)(2) conformal field theory perturbed by a current-current interaction, which is related to an integrable fermionic model introduced by Andrei and Destri. In the context of spin-chain problems, we give several realizations of this self-dual sine-Gordon model and discuss the universality class of the transitions.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] MOMENTUM SPACE RENORMALIZATION FOR THE SINE-GORDON MODEL
    KNOPS, HJF
    OUDEN, LWJD
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1980, 103 (03) : 597 - 608
  • [42] The Quantum Sine-Gordon Model in Perturbative AQFT
    Bahns, Dorothea
    Rejzner, Kasia
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 357 (01) : 421 - 446
  • [43] The two-boundary sine-Gordon model
    Caux, JS
    Saleur, H
    Siano, E
    NUCLEAR PHYSICS B, 2003, 672 (03) : 411 - 461
  • [44] Competing phases and intertwined orders in coupled wires near the self-dual point
    Ma, Ken K. W.
    Turker, Oguz
    Seidel, Alexander
    Yang, Kun
    PHYSICAL REVIEW B, 2023, 108 (24)
  • [45] Effective potential for the massive sine-Gordon model
    Nagy, S.
    Polonyi, J.
    Sailer, K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (25): : 8105 - 8117
  • [46] Quantization of solitons and the restricted Sine-Gordon model
    Babelon, O
    Bernard, D
    Smirnov, FA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (02) : 319 - 354
  • [47] A nonlocal Poisson bracket of the sine-Gordon model
    Mikhailov, Andrei
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (01) : 85 - 94
  • [48] Boundary states in SUSY sine-Gordon model
    Bajnok, Z.
    Palla, L.
    Takacs, G.
    Bilinear Integrable Systems: From Classical to Quatum, Continuous to Discrete, 2006, 201 : 35 - 42
  • [49] RENORMALIZABILITY AND NONPRODUCTION IN COMPLEX SINE-GORDON MODEL
    BONNEAU, G
    PHYSICS LETTERS B, 1983, 133 (05) : 341 - 343
  • [50] THE KONDO PROBLEM AS THE QUANTUM SINE-GORDON MODEL
    ZHANG, GM
    CHEN, H
    WU, XA
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1991, 15 (04) : 497 - 500