A VARIATION OF CONSTANT FORMULA FOR FRACTIONAL STOCHASTIC NEUTRAL DIFFERENTIAL EQUATIONS

被引:0
|
作者
Ahmadova, Arzu [1 ]
Mahmudov, Nazim I. [1 ]
机构
[1] Eastern Mediterranean Univ, Fac Arts & Sci, Dept Math, Gazimagusa, Trnc, Turkey
关键词
Liouville-Caputo Fractional Derivative; Fractional Stochastic Neutral Differential Equations; Mild Solution; Existence and Uniqueness; Ito's Isometry; Caratheodory Approximations; EXISTENCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:47 / 49
页数:3
相关论文
共 50 条
  • [1] A variation of constant formula for Caputo fractional stochastic differential equations
    Anh, P. T.
    Doan, T. S.
    Huong, P. T.
    STATISTICS & PROBABILITY LETTERS, 2019, 145 : 351 - 358
  • [2] A variation of constant formula for Caputo-Hadamard fractional stochastic differential equations
    Li, Min
    Huang, Chengming
    Wang, Nan
    STATISTICS & PROBABILITY LETTERS, 2024, 214
  • [3] A variation of constant formula for Caputo fractional stochastic differential equations with jump-diffusion
    Xu, Shuli
    Feng, Yuqiang
    Jiang, Jun
    Nie, Na
    STATISTICS & PROBABILITY LETTERS, 2022, 185
  • [4] Variation of constant formula for delay differential equations
    Hbid, M. L.
    Ezzinbi, K.
    DELAY DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2006, : 143 - +
  • [5] Stability results for neutral fractional stochastic differential equations
    Kahouli, Omar
    Albadran, Saleh
    Elleuch, Zied
    Bouteraa, Yassine
    Ben Makhlouf, Abdellatif
    AIMS MATHEMATICS, 2024, 9 (02): : 3253 - 3263
  • [6] Analysis of stochastic neutral fractional functional differential equations
    Siva Ranjani, Alagesan
    Suvinthra, Murugan
    Balachandran, Krishnan
    Ma, Yong-Ki
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [7] Analysis of stochastic neutral fractional functional differential equations
    Alagesan Siva Ranjani
    Murugan Suvinthra
    Krishnan Balachandran
    Yong-Ki Ma
    Boundary Value Problems, 2022
  • [8] Approximate solutions for neutral stochastic fractional differential equations
    Khatoon, A.
    Raheem, A.
    Afreen, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125
  • [9] Variation of constant formula for first order fuzzy differential equations
    Khastan, A.
    Nieto, J. J.
    Rodriguez-Lopez, Rosana
    FUZZY SETS AND SYSTEMS, 2011, 177 (01) : 20 - 33
  • [10] An averaging result for impulsive fractional neutral stochastic differential equations
    Liu, Jiankang
    Xu, Wei
    APPLIED MATHEMATICS LETTERS, 2021, 114