Estimating the Entropy Rate of Finite Markov Chains With Application to Behavior Studies

被引:25
|
作者
Vegetabile, Brian G. [1 ]
Stout-Oswald, Stephanie A. [2 ]
Davis, Elysia Poggi [3 ,4 ]
Baram, Tallie Z. [5 ,6 ,7 ]
Stern, Hal S. [8 ]
机构
[1] Univ Calif Irvine, Dept Stat, Donald Bren Sch Informat & Comp Sci, Irvine, CA 92697 USA
[2] Univ Denver, Psychol Dept, Denver, CO USA
[3] Univ Denver, Psychol, Denver, CO USA
[4] Univ Calif Irvine, Dept Psychiat & Human Behav, Irvine, CA 92717 USA
[5] Univ Calif Irvine, Pediat Anat Neurobiol Neurol, Irvine, CA USA
[6] Univ Calif Irvine, Neurol Sci, Irvine, CA USA
[7] Univ Calif Irvine, Conte Ctr, Irvine, CA USA
[8] Univ Calif Irvine, Stat, Irvine, CA USA
关键词
complexity; Markov process; Lempel-Ziv; predictability; COMPRESSION; COMPLEXITY; ALGORITHM;
D O I
10.3102/1076998618822540
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Predictability of behavior is an important characteristic in many fields including biology, medicine, marketing, and education. When a sequence of actions performed by an individual can be modeled as a stationary time-homogeneous Markov chain the predictability of the individual's behavior can be quantified by the entropy rate of the process. This article compares three estimators of the entropy rate of finite Markov processes. The first two methods directly estimate the entropy rate through estimates of the transition matrix and stationary distribution of the process. The third method is related to the sliding-window Lempel-Ziv compression algorithm. The methods are compared via a simulation study and in the context of a study of interactions between mothers and their children.
引用
收藏
页码:282 / 308
页数:27
相关论文
共 50 条
  • [21] On the entropy of wide Markov chains
    Girardin, Valerie
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2010, 1305 : 459 - 465
  • [22] FINITE NONHOMOGENEOUS MARKOV-CHAINS - ASYMPTOTIC-BEHAVIOR
    COHN, H
    ADVANCES IN APPLIED PROBABILITY, 1976, 8 (03) : 502 - 516
  • [23] Modeling finite precision LMS behavior using Markov chains
    Montenegro, Yasmin
    Bermudez, Jose C. M.
    Nascimento, Vitor H.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 2548 - 2551
  • [24] A generalization of a result concerning the asymptotic behavior of finite Markov chains
    Nicolaie, Alina
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (18) : 3321 - 3329
  • [25] Circulation Distribution, Entropy Production and Irreversibility of Finite Markov Chains with Continuous Parameter
    Jiang, Da-Quan
    Qian, Min
    Qian, Min-Ping
    MATHEMATICAL THEORY OF NONEQUILIBRIUM STEADY STATES: ON THE FRONTIER OF PROBABILITY AND DYNAMICAL SYSTEMS, 2004, 1833 : 45 - 66
  • [26] A NOTE ON RENYI'S ENTROPY RATE FOR TIME-INHOMOGENEOUS MARKOV CHAINS
    Li, Wenxi
    Wang, Zhongzhi
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2019, 33 (04) : 579 - 590
  • [27] LUMPINGS OF MARKOV CHAINS, ENTROPY RATE PRESERVATION, AND HIGHER-ORDER LUMPABILITY
    Geiger, Bernhard C.
    Temmel, Christoph
    JOURNAL OF APPLIED PROBABILITY, 2014, 51 (04) : 1114 - 1132
  • [28] Pointwise ergodic theorems with rate and application to the CLT for Markov chains
    Cuny, Christophe
    Lin, Michael
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03): : 710 - 733
  • [29] FUNCTIONS OF FINITE MARKOV CHAINS
    LEYSIEFF.FW
    ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (03): : 1077 - &
  • [30] On a result for finite Markov chains
    Kulathinal, Sangita
    Ghosh, Lagnojita
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2006, 37 (04) : 498 - 502