Newton-X: a surface-hopping program for nonadiabatic molecular dynamics

被引:436
|
作者
Barbatti, Mario [1 ]
Ruckenbauer, Matthias [2 ]
Plasser, Felix [3 ]
Pittner, Jiri [4 ]
Granucci, Giovanni [5 ]
Persico, Maurizio [5 ]
Lischka, Hans [3 ,6 ]
机构
[1] Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470 Mulheim, Germany
[2] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, Frankfurt, Germany
[3] Univ Vienna, Inst Theoret Chem, Vienna, Austria
[4] Czech Acad Sci, J Heyrovsky Inst Phys Chem, Prague, Czech Republic
[5] Univ Pisa, Dipartimento Chim & Chim Ind, Pisa, Italy
[6] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
BORN-OPPENHEIMER; EXCITED-STATES; SIMULATION; PHOTODYNAMICS; EFFICIENT;
D O I
10.1002/wcms.1158
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Newton-X program is a general-purpose program package for excited-state molecular dynamics, including nonadiabatic methods. Its modular design allows Newton-X to be easily linked to any quantum-chemistry package that can provide excited-state energy gradients. At the current version, Newton-X can perform nonadiabatic dynamics using Columbus, Turbomole, Gaussian, and Gamess program packages with multireference configuration interaction, multiconfigurational self-consistent field, time-dependent density functional theory, and other methods. Nonadiabatic dynamics simulations with a hybrid combination of methods, such as Quantum-Mechanics/Molecular-Mechanics, are also possible. Moreover, Newton-X can be used for the simulation of absorption and emission spectra. The code is distributed free of charge for noncommercial and nonprofit uses at www.newtonx.org. (C) 2013 John Wiley & Sons, Ltd. WIREs Comput Mol Sci 2014, 4:26-33. doi: 10.1002/wcms.1158 The authors have declared no conflicts of interest in relation to this article. For further resources related to this article, please visit the WIREs website.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 50 条
  • [31] Ultrafast Photoisomerization of N-(2-Methoxybenzylidene)aniline: Nonadiabatic Surface-Hopping Study
    Gao, Aihua
    Wang, Meishan
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (33): : 7151 - 7160
  • [32] Taming Disulfide Bonds with Laser Fields. Nonadiabatic Surface-Hopping Simulations in a Ruthenium Complex
    Heindl, Moritz
    Gonzalez, Leticia
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (08): : 1894 - 1900
  • [33] Trajectory surface-hopping dynamics of light-driven imine switches
    Gong, Qianqian
    Li, Yazhen
    Liu, Fengyi
    CHEMICAL PHYSICS LETTERS, 2020, 751
  • [34] Surface hopping methods for nonadiabatic dynamics in extended systems
    Wang, Linjun
    Qiu, Jing
    Bai, Xin
    Xu, Jiabo
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2020, 10 (02)
  • [35] Path integral molecular dynamics with surface hopping for thermal equilibrium sampling of nonadiabatic systems
    Lu, Jianfeng
    Zhou, Zhennan
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (15):
  • [36] Trajectory surface-hopping study of 1-pyrazoline photodissociation dynamics
    Mahata, Prabhash
    Rauta, Akshaya Kumar
    Maiti, Biswajit
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (19):
  • [37] Trajectory surface-hopping photoinduced dynamics from Rydberg states of trimethylamine
    Papai, Matyas
    Li, Xusong
    Nielsen, Martin M.
    Moller, Klaus B.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (18) : 10964 - 10977
  • [38] Treatment of Nonadiabatic Dynamics by On-The-Fly Trajectory Surface Hopping Dynamics
    Peng Jiawei
    Xie Yu
    Hu Deping
    Du Likai
    Lan Zhenggang
    ACTA PHYSICO-CHIMICA SINICA, 2019, 35 (01) : 28 - 48
  • [39] Ring Polymer Surface Hopping: Incorporating Nuclear Quantum Effects into Nonadiabatic Molecular Dynamics Simulations
    Shakib, Famaz A.
    Huo, Pengfei
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (13): : 3073 - 3080
  • [40] Nonadiabatic Dynamics of Cycloparaphenylenes with TD-DFTB Surface Hopping
    Stojanovic, Ljiljana
    Aziz, Saadullah G.
    Hilal, Rifaat H.
    Plasser, Felix
    Niehaus, Thomas A.
    Barbatti, Mario
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (12) : 5846 - 5860