Nature-inspired cost optimisation for enterprise cloud systems using joint allocation of resources

被引:18
|
作者
Mishra, Suchintan [1 ]
Sahoo, Manmath Narayan [1 ]
Sangaiah, Arun Kumar [2 ]
Bakshi, Sambit [1 ]
机构
[1] Natl Inst Technol, Dept Comp Sci & Technol, Rourkela 769008, Odisha, India
[2] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore, Tamil Nadu, India
关键词
VM placement; cloud computing; joint allocation; multiobjective optimisation; ACO; resource allocation; fuzzy AHP; VIRTUAL MACHINE PLACEMENT; ALGORITHM;
D O I
10.1080/17517575.2019.1605001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Resource allocation in cloud being NP-complete lacks a generalised optimal solution. In this work, we propose a nature-inspired ACO-Fuzzy framework based joint resource allocation algorithm for cloud datacenters. The algorithm assigns compute and network resources efficiently to minimize end-user cost. An ACO-based local search heuristic is used to discover the current status of resources and then a Fuzzy-based decision maker finds the most optimal set of compute and network resources minimising the end-user cost. Analytical and experimental evaluations validate the efficiency of joint allocation.
引用
收藏
页码:174 / 196
页数:23
相关论文
共 50 条
  • [21] Nature-inspired PDMS cumulonimbus micro-energy-harvesting cloud
    Rajeev, Sreenidhi Prabha
    John, V. Nimmy
    Sabarinath, S.
    Ashfak, A.
    Subash, Cherumanil Karimuthil
    Varghese, Soney
    APPLIED NANOSCIENCE, 2021, 11 (01) : 127 - 137
  • [22] Nature-Inspired Cloud-Crowd Computing for Intelligent Transportation System
    Singh, Vandana
    Sahana, Sudip Kumar
    Bhattacharjee, Vandana
    SUSTAINABILITY, 2022, 14 (23)
  • [23] Energy-efficient Nature-Inspired techniques in Cloud computing datacenters
    Usman, Mohammed Joda
    Ismail, Abdul Samad
    Abdul-Salaam, Gaddafi
    Chizari, Hassan
    Kaiwartya, Omprakash
    Gital, Abdulsalam Yau
    Abdullahi, Muhammed
    Aliyu, Ahmed
    Dishing, Salihu Idi
    TELECOMMUNICATION SYSTEMS, 2019, 71 (02) : 275 - 302
  • [24] Benchmarking and comparison of nature-inspired population-based continuous optimisation algorithms
    Pham, D. T.
    Castellani, M.
    SOFT COMPUTING, 2014, 18 (05) : 871 - 903
  • [25] Nature-inspired waveform optimisation for range spread target detection in cognitive radar
    Wang, Qing
    Li, Meng
    Gao, Lirong
    Li, Kaiming
    Chen, Hua
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (20): : 6767 - 6771
  • [26] Nature-Inspired Chemical Reaction Optimisation Algorithm for Handling Nurse Rostering Problem
    Arajy, Yahya Z.
    Abdullah, Salwani
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 2, 2015, : 543 - 559
  • [27] Nature-inspired resource management and dynamic rescheduling of microservices in Cloud datacenters
    Joseph, Christina Terese
    Chandrasekaran, Kandasamy
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (17):
  • [28] Nature-inspired PDMS cumulonimbus micro-energy-harvesting cloud
    Sreenidhi Prabha Rajeev
    V. Nimmy John
    S. Sabarinath
    A. Ashfak
    Cherumanil Karimuthil Subash
    Soney Varghese
    Applied Nanoscience, 2021, 11 : 127 - 137
  • [29] Optimisation of a Cascade Refrigeration System with Natural Refrigerants, Based on Nature-Inspired Algorithms
    Malek Hamzaoui
    Zine Aidoun
    Hakim Nesreddine
    Samir Tiachacht
    Arabian Journal for Science and Engineering, 2024, 49 : 7701 - 7730
  • [30] Benchmarking and comparison of nature-inspired population-based continuous optimisation algorithms
    D. T. Pham
    M. Castellani
    Soft Computing, 2014, 18 : 871 - 903