Revealing non-Hermitian band structure of photonic Floquet media

被引:15
|
作者
Park, Jagang [1 ,5 ]
Cho, Hyukjoon [1 ]
Lee, Seojoo [1 ]
Lee, Kyungmin [1 ]
Lee, Kanghee [1 ]
Park, Hee Chul [2 ]
Ryu, Jung -Wan [2 ]
Park, Namkyoo [3 ]
Jeon, Sanggeun [4 ]
Min, Bumki [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mech Engn, Daejeon 34141, South Korea
[2] Inst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon 34126, South Korea
[3] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
[4] Korea Univ, Sch Elect Engn, Seoul 02841, South Korea
[5] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
来源
SCIENCE ADVANCES | 2022年 / 8卷 / 40期
基金
新加坡国家研究基金会;
关键词
WAVE EXPANSION METHOD; EXCEPTIONAL POINTS; TIME;
D O I
10.1126/sciadv.abo6220
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Periodically driven systems are ubiquitously found in both classical and quantum regimes. In the field of photonics, these Floquet systems have begun to provide insight into how time periodicity can extend the concept of spatially periodic photonic crystals and metamaterials to the time domain. However, despite the necessity arising from the presence of nonreciprocal coupling between states in a photonic Floquet medium, a unified non-Hermitian band structure description remains elusive. We experimentally reveal the unique Bloch-Floquet and non-Bloch band structures of a photonic Floquet medium emulated in the microwave regime with a one-dimensional array of time -periodically driven resonators. These non-Hermitian band structures are shown to be two measurable distinct subsets of complex eigenfrequency surfaces of the photonic Floquet medium defined in complex momentum space.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Floquet Spectrum and Dynamics for Non-Hermitian Floquet One-Dimension Lattice Model
    Zhang, Ya-Nan
    Xu, Shuang
    Liu, Hao-Di
    Yi, Xue-Xi
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (01) : 355 - 365
  • [32] Emergent conservation in the Floquet dynamics of integrable non-Hermitian models
    Banerjee, Tista
    Sengupta, K.
    [J]. PHYSICAL REVIEW B, 2023, 107 (15)
  • [33] Multistate non-Hermitian Floquet dynamics in short laser pulses
    Day, H.C.
    Piraux, Bernard
    Potvliege, R.M.
    [J]. Physical Review A. Atomic, Molecular, and Optical Physics, 2000, 61 (03):
  • [34] Multistate non-Hermitian Floquet dynamics in short laser pulses
    Day, HC
    Piraux, B
    Potvliege, RM
    [J]. PHYSICAL REVIEW A, 2000, 61 (03): : 4
  • [35] Loss-induced Floquet non-Hermitian skin effect
    Li, Yaohua
    Lu, Cuicui
    Zhang, Shuang
    Liu, Yong-Chun
    [J]. PHYSICAL REVIEW B, 2023, 108 (22)
  • [36] Topological theory of non-Hermitian photonic systems
    Silveirinha, Mario G.
    [J]. PHYSICAL REVIEW B, 2019, 99 (12)
  • [37] Optomechanical interactions in non-Hermitian photonic molecules
    Schoenleber, D. W.
    Teimoupour, M. H.
    El-Ganainy, R.
    Eisfeld, A.
    [J]. 2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [38] Optomechanical interactions in non-Hermitian photonic molecules
    Schoenleber, D. W.
    Eisfeld, A.
    El-Ganainy, R.
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18
  • [39] Non-Hermitian photonic spin Hall insulators
    Camara, Rodrigo P.
    Rappoport, Tatiana G.
    Silveirinha, Mario G.
    [J]. PHYSICAL REVIEW B, 2024, 109 (24)
  • [40] Photonic corner skin modes in non-Hermitian photonic crystals
    Zhu, Weiwei
    Gong, Jiangbin
    [J]. PHYSICAL REVIEW B, 2023, 108 (03)