Boundary node Petrov-Galerkin method in solid structures

被引:3
|
作者
Li, M. [1 ]
Dou, F. F. [2 ]
Korakianitis, T. [3 ]
Shi, C. [4 ]
Wen, P. H. [4 ]
机构
[1] Taiyuan Univ Technol, Coll Math, Taiyuan, Shanxi, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
[3] St Louis Univ, Pk Coll Engn Aviat & Technol, St Louis, MO 63103 USA
[4] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 01期
关键词
Meshless Local Petrov-Galerkin method; Partial differential matrix; Mapping; Lagrange interpolation; Functionally graded media; Laplace transform; TRANSIENT HEAT-CONDUCTION; INTEGRAL-EQUATION METHOD; RADIAL BASIS FUNCTIONS; FINITE BLOCK METHOD; FUNDAMENTAL-SOLUTIONS; NUMERICAL INVERSION; LAPLACE TRANSFORMS; ELEMENT; ELASTICITY; MLPG;
D O I
10.1007/s40314-016-0335-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the interpolation of the Lagrange series and the Finite Block Method (FBM), the formulations of the Boundary Node Petrov-Galerkin Method (BNPGM) are presented in the weak form in this paper and their applications are demonstrated to the elasticity of functionally graded materials, subjected to static and dynamic loads. By introducing the mapping technique, a block of quadratic type is transformed from the Cartesian coordinate to the normalized coordinate with 8 seeds for two-dimensional problems. The first-order partial differential matrices of boundary nodes are obtained in terms of the nodal values of the boundary node, which can be utilized to determine the tractions on the boundary. Time-dependent partial differential equations are analyzed in the Laplace transformed domain and the Durbin's inversion method is applied to determine the physical values in the time domain. Illustrative numerical examples are given and comparison has been made with the analytical solutions, the Boundary Element Method (BEM) and the Finite Element Method (FEM).
引用
收藏
页码:135 / 159
页数:25
相关论文
共 50 条
  • [31] Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems on polygons
    Hongli Jia
    Benyu Guo
    Chinese Annals of Mathematics, Series B, 2010, 31 : 855 - 878
  • [32] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wünsche, M.
    Computers, Materials and Continua, 2006, 4 (02): : 109 - 117
  • [33] DOMAIN DECOMPOSITION PRECONDITIONERS FOR THE DISCONTINUOUS PETROV-GALERKIN METHOD
    Li, Xiang
    Xu, Xuejun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03): : 1021 - 1044
  • [34] The natural neighbour Petrov-Galerkin method for thick plates
    Li, S. L.
    Liu, K. Y.
    Long, S. Y.
    Li, G. Y.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2011, 35 (04) : 616 - 622
  • [35] Meshless local Petrov-Galerkin method in anisotropic elasticity
    Sladek, J
    Sladek, V
    Atluri, SN
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 6 (05): : 477 - 489
  • [36] A quasi optimal Petrov-Galerkin method for Helmholtz problem
    Loula, Abimael F. D.
    Fernandes, Daniel T.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (12) : 1595 - 1622
  • [37] On the improvements and applications of the Meshless Local Petrov-Galerkin method
    Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
    不详
    不详
    Tongji Daxue Xuebao, 2006, 5 (603-606):
  • [38] A MOVING PETROV-GALERKIN METHOD FOR TRANSPORT-EQUATIONS
    HERBST, BM
    SCHOOMBIE, SW
    MITCHELL, AR
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1982, 18 (09) : 1321 - 1336
  • [39] Error assessment in the meshless local Petrov-Galerkin method
    Pannachet, T
    Barry, W
    Askes, H
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 989 - 994
  • [40] Meshless local Petrov-Galerkin method for the laminated plates
    Xiong, Y. (yuanbox@msn.com), 2005, Beijing University of Aeronautics and Astronautics (BUAA) (22):