Boundary node Petrov-Galerkin method in solid structures

被引:3
|
作者
Li, M. [1 ]
Dou, F. F. [2 ]
Korakianitis, T. [3 ]
Shi, C. [4 ]
Wen, P. H. [4 ]
机构
[1] Taiyuan Univ Technol, Coll Math, Taiyuan, Shanxi, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
[3] St Louis Univ, Pk Coll Engn Aviat & Technol, St Louis, MO 63103 USA
[4] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 01期
关键词
Meshless Local Petrov-Galerkin method; Partial differential matrix; Mapping; Lagrange interpolation; Functionally graded media; Laplace transform; TRANSIENT HEAT-CONDUCTION; INTEGRAL-EQUATION METHOD; RADIAL BASIS FUNCTIONS; FINITE BLOCK METHOD; FUNDAMENTAL-SOLUTIONS; NUMERICAL INVERSION; LAPLACE TRANSFORMS; ELEMENT; ELASTICITY; MLPG;
D O I
10.1007/s40314-016-0335-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the interpolation of the Lagrange series and the Finite Block Method (FBM), the formulations of the Boundary Node Petrov-Galerkin Method (BNPGM) are presented in the weak form in this paper and their applications are demonstrated to the elasticity of functionally graded materials, subjected to static and dynamic loads. By introducing the mapping technique, a block of quadratic type is transformed from the Cartesian coordinate to the normalized coordinate with 8 seeds for two-dimensional problems. The first-order partial differential matrices of boundary nodes are obtained in terms of the nodal values of the boundary node, which can be utilized to determine the tractions on the boundary. Time-dependent partial differential equations are analyzed in the Laplace transformed domain and the Durbin's inversion method is applied to determine the physical values in the time domain. Illustrative numerical examples are given and comparison has been made with the analytical solutions, the Boundary Element Method (BEM) and the Finite Element Method (FEM).
引用
收藏
页码:135 / 159
页数:25
相关论文
共 50 条
  • [1] Boundary node Petrov–Galerkin method in solid structures
    M. Li
    F. F. Dou
    T. Korakianitis
    C. Shi
    P. H. Wen
    Computational and Applied Mathematics, 2018, 37 : 135 - 159
  • [2] An improved impermeable solid boundary scheme for Meshless Local Petrov-Galerkin method
    Pan, Xinglin
    Zhou, Yan
    Dong, Ping
    Shi, Huabin
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2022, 95 : 94 - 105
  • [3] A meshless local Petrov-Galerkin scaled boundary method
    Deeks, AJ
    Augarde, CE
    COMPUTATIONAL MECHANICS, 2005, 36 (03) : 159 - 170
  • [4] A meshless local Petrov-Galerkin scaled boundary method
    A. J. Deeks
    C. E. Augarde
    Computational Mechanics, 2005, 36 : 159 - 170
  • [5] Discontinuous Petrov-Galerkin boundary elements
    Heuer, Norbert
    Karkulik, Michael
    NUMERISCHE MATHEMATIK, 2017, 135 (04) : 1011 - 1043
  • [6] Imposing boundary conditions in the meshless local Petrov-Galerkin method
    Fonseca, A. R.
    Viana, S. A.
    Silva, E. J.
    Mesquita, R. C.
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2008, 2 (06) : 387 - 394
  • [7] A Petrov-Galerkin method with quadrature for elliptic boundary value problems
    Bialecki, B
    Ganesh, M
    Mustapha, K
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (01) : 157 - 177
  • [8] Influence of method for imposing essential boundary condition on meshless Galerkin/Petrov-Galerkin approaches
    Ikuno, Soichiro
    Takakura, Katsuyuki
    Kamitani, Atsushi
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1501 - 1504
  • [9] INTERPRETING IDR AS A PETROV-GALERKIN METHOD
    Simoncini, Valeria
    Szyld, Daniel B.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04): : 1898 - 1912
  • [10] Modeling of porous piezoelectric structures by themeshless local Petrov-Galerkin method
    Sladek, J.
    Sladek, V.
    Pan, E.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2016, 23 (03) : 233 - 247