Bridges and random truncations of random matrices

被引:2
|
作者
Beffara, Vincent [1 ]
Donati-Martin, Catherine [2 ]
Rouault, Alain [2 ]
机构
[1] ENS Lyon, UMPA, UMR 5669, 46 Alle Italie, F-69364 Lyon 07, France
[2] Univ Versailles St Quentin, LMV UMR 8100, F-78035 Versailles, France
关键词
Random matrices; unitary ensemble; orthogonal ensemble; bivariate Brownian bridge; subordination; WEAK-CONVERGENCE; STOCHASTIC-PROCESSES; SEQUENCES; ENTRIES;
D O I
10.1142/S2010326314500063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let U be a Haar distributed matrix in U(n) or O(n). In a previous paper, we proved that after centering, the two-parameter process T-(n)(s, t) = Sigma(i <= left perpendicular ns right perpendicular,j <= left perpendicular nt right perpendicular) vertical bar U-ij vertical bar(2), s, t is an element of[0, 1] converges in distribution to the bivariate tied-down Brownian bridge. In the present paper, we replace the deterministic truncation of U by a random one, in which each row (respectively, column) is chosen with probability s (respectively, t) independently. We prove that the corresponding two-parameter process, after centering and normalization by n(-1/2) converges to a Gaussian process. On the way we meet other interesting convergences.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Chaotic dynamics, random matrices, random polynomials
    Bohigas, O
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 265 - 265
  • [22] WHEN RANDOM TENSORS MEET RANDOM MATRICES
    Seddik, Mohamed El Amine
    Guillaud, Maxime
    Couillet, Romain
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (1A): : 203 - 248
  • [23] Random matrices and the Potts model on random graphs
    Guionnet, Alice
    PROBABILITY AND STATISTICAL PHYSICS IN ST. PETERSBURG, 2016, 91 : 273 - 302
  • [24] Toeplitz determinants, random matrices and random permutations
    Widom, H
    TOEPLITZ MATRICES AND SINGULAR INTEGRAL EQUATIONS: THE BERND SILBERMANN ANNIVERSARY VOL, 2002, 135 : 317 - 328
  • [25] Maximal displacement for bridges of random walks in a random environment
    Gantert, Nina
    Peterson, Jonathon
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (03): : 663 - 678
  • [26] Characteristic polynomials of random truncations: Moments, duality and asymptotics
    Serebryakov, Alexander
    Simm, Nick
    Dubach, Guillaume
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2023, 12 (01)
  • [27] A Class of Random Matrices
    Kyrychenko, O. L.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2024, 60 (01) : 39 - 44
  • [28] Patterned Random Matrices
    Gillard, Jonathan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2019, 182 (02) : 714 - 714
  • [29] NORMS OF RANDOM MATRICES
    BENNETT, G
    GOODMAN, V
    NEWMAN, CM
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 59 (02) : 359 - 365
  • [30] PRODUCTS OF RANDOM MATRICES
    FURSTENBERG, H
    KESTEN, H
    ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02): : 457 - 469