Inequalities for convex bodies and their polar bodies

被引:1
|
作者
Wei, Bo [1 ]
Wang, Weidong [1 ]
机构
[1] China Three Gorges Univ, Dept Math, Yichang 443002, Peoples R China
关键词
Convex body; Polar body; Dual quermassintegrals; L-p-dual mixed quermassintegrals; DUALS;
D O I
10.1007/s00013-013-0508-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The infimum of the quermassintegral product W (i) (K)W (i) (K*) for i = n - 1 was established by Lutwak. In this paper, the infimum of the dual quermassintegral product for any p a parts per thousand yen 1 is obtained, and some new inequalities about convex bodies and their polar bodies are established.
引用
收藏
页码:491 / 500
页数:10
相关论文
共 50 条
  • [31] LATTICE INEQUALITIES FOR CONVEX-BODIES AND ARBITRARY LATTICES
    SCHNELL, U
    MONATSHEFTE FUR MATHEMATIK, 1993, 116 (3-4): : 331 - 337
  • [32] Some logarithmic Minkowski inequalities for nonsymmetric convex bodies
    WANG XingXing
    XU WenXue
    ZHOU JiaZu
    Science China Mathematics, 2017, 60 (10) : 1857 - 1872
  • [33] Some logarithmic Minkowski inequalities for nonsymmetric convex bodies
    XingXing Wang
    WenXue Xu
    JiaZu Zhou
    Science China Mathematics, 2017, 60 : 1857 - 1872
  • [34] Some logarithmic Minkowski inequalities for nonsymmetric convex bodies
    Wang, XingXing
    Xu, WenXue
    Zhou, JiaZu
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (10) : 1857 - 1872
  • [35] A generalized localization theorem and geometric inequalities for convex bodies
    Fradelizi, M.
    Guedon, O.
    ADVANCES IN MATHEMATICS, 2006, 204 (02) : 509 - 529
  • [36] Some new minimax inequalities for centered convex bodies
    Martini, Horst
    Mustafaev, Zokhrab
    Zarbaliev, Sakhavet M.
    AEQUATIONES MATHEMATICAE, 2024,
  • [37] Deviation inequalities for random polytopes in arbitrary convex bodies
    Brunel, Victor-Emmanuel
    BERNOULLI, 2020, 26 (04) : 2488 - 2502
  • [38] Quadratic inequalities between the mixed volumes of convex bodies
    Fenchel, W
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1936, 203 : 647 - 650
  • [39] Analogs of the Markov and Schaeffer–Duffin inequalities for convex bodies
    V. I. Skalyga
    Mathematical Notes, 2000, 68 (1)
  • [40] On Brunn–Minkowski-Type Inequalities for Polar Bodies
    María A. Hernández Cifre
    Jesús Yepes Nicolás
    The Journal of Geometric Analysis, 2016, 26 : 143 - 155