Characterization of Volcanic Cloud Components Using Machine Learning Techniques and SEVIRI Infrared Images
被引:15
|
作者:
Torrisi, Federica
论文数: 0引用数: 0
h-index: 0
机构:
Ist Nazl Geofis & Vulcanol, Sez Catania, Osservatorio Etneo, I-95125 Catania, Italy
Univ Catania, Dept Elect Elect & Comp Engn, I-95125 Catania, ItalyIst Nazl Geofis & Vulcanol, Sez Catania, Osservatorio Etneo, I-95125 Catania, Italy
Torrisi, Federica
[1
,2
]
论文数: 引用数:
h-index:
机构:
Amato, Eleonora
[1
,3
]
Corradino, Claudia
论文数: 0引用数: 0
h-index: 0
机构:
Ist Nazl Geofis & Vulcanol, Sez Catania, Osservatorio Etneo, I-95125 Catania, ItalyIst Nazl Geofis & Vulcanol, Sez Catania, Osservatorio Etneo, I-95125 Catania, Italy
Corradino, Claudia
[1
]
Mangiagli, Salvatore
论文数: 0引用数: 0
h-index: 0
机构:
Ist Nazl Geofis & Vulcanol, Sez Catania, Osservatorio Etneo, I-95125 Catania, ItalyIst Nazl Geofis & Vulcanol, Sez Catania, Osservatorio Etneo, I-95125 Catania, Italy
Mangiagli, Salvatore
[1
]
Del Negro, Ciro
论文数: 0引用数: 0
h-index: 0
机构:
Ist Nazl Geofis & Vulcanol, Sez Catania, Osservatorio Etneo, I-95125 Catania, ItalyIst Nazl Geofis & Vulcanol, Sez Catania, Osservatorio Etneo, I-95125 Catania, Italy
Del Negro, Ciro
[1
]
机构:
[1] Ist Nazl Geofis & Vulcanol, Sez Catania, Osservatorio Etneo, I-95125 Catania, Italy
[2] Univ Catania, Dept Elect Elect & Comp Engn, I-95125 Catania, Italy
Volcanic explosive eruptions inject several different types of particles and gasses into the atmosphere, giving rise to the formation and propagation of volcanic clouds. These can pose a serious threat to the health of people living near an active volcano and cause damage to air traffic. Many efforts have been devoted to monitor and characterize volcanic clouds. Satellite infrared (IR) sensors have been shown to be well suitable for volcanic cloud monitoring tasks. Here, a machine learning (ML) approach was developed in Google Earth Engine (GEE) to detect a volcanic cloud and to classify its main components using satellite infrared images. We implemented a supervised support vector machine (SVM) algorithm to segment a combination of thermal infrared (TIR) bands acquired by the geostationary MSG-SEVIRI (Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager). This ML algorithm was applied to some of the paroxysmal explosive events that occurred at Mt. Etna between 2020 and 2022. We found that the ML approach using a combination of TIR bands from the geostationary satellite is very efficient, achieving an accuracy of 0.86, being able to properly detect, track and map automatically volcanic ash clouds in near real-time.
机构:
Zhejiang Ind Polytech Coll, Shaoxing City 312000, Zhejiang, Peoples R ChinaZhejiang Ind Polytech Coll, Shaoxing City 312000, Zhejiang, Peoples R China
Wang, Jiatong
Zhu, Tiantian
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Ind Polytech Coll, Shaoxing City 312000, Zhejiang, Peoples R ChinaZhejiang Ind Polytech Coll, Shaoxing City 312000, Zhejiang, Peoples R China
Zhu, Tiantian
Liang, Shan
论文数: 0引用数: 0
h-index: 0
机构:
Waltonchain Blockchain Inst Nonprofit Consortium, Seoul 06651, South KoreaZhejiang Ind Polytech Coll, Shaoxing City 312000, Zhejiang, Peoples R China
Liang, Shan
Karthiga, R.
论文数: 0引用数: 0
h-index: 0
机构:
SASTRA Deemed Univ, Dept Elect & Commun Engn, Sch Elect Elect Engn, Thanjavur 613403, IndiaZhejiang Ind Polytech Coll, Shaoxing City 312000, Zhejiang, Peoples R China
Karthiga, R.
Narasimhan, K.
论文数: 0引用数: 0
h-index: 0
机构:
SASTRA Deemed Univ, Dept Elect & Commun Engn, Sch Elect Elect Engn, Thanjavur 613403, IndiaZhejiang Ind Polytech Coll, Shaoxing City 312000, Zhejiang, Peoples R China
Narasimhan, K.
Elamaran, V
论文数: 0引用数: 0
h-index: 0
机构:
SASTRA Deemed Univ, Dept Elect & Commun Engn, Sch Elect Elect Engn, Thanjavur 613403, IndiaZhejiang Ind Polytech Coll, Shaoxing City 312000, Zhejiang, Peoples R China