Legendrian torus knots in S1 x S2

被引:4
|
作者
Chen, Feifei [1 ]
Ding, Fan [1 ,2 ]
Li, Youlin [3 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, LMAM, Beijing 100871, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Legendrian knot; torus knot; twisting number; rotation number; convex torus; LENS SPACES; LINKS;
D O I
10.1142/S0218216515500649
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify Legendrian torus knots in S-1 x S-2 with its standard tight contact structure up to Legendrian isotopy.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Round-handle decomposition of S2 x S1
    Cordero, A.
    Martinez Alfaro, J.
    Vindel, P.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2007, 22 (02): : 179 - 202
  • [32] Khovanov Homology for Links in #r (S2 x S1)
    Willis, Michael
    MICHIGAN MATHEMATICAL JOURNAL, 2021, 70 (04) : 675 - 748
  • [33] Isoperimetric estimate for the Ricci flow on S2 x S1
    Cao, XD
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2005, 13 (04) : 727 - 739
  • [34] Gravity dual of gauge theory on S2 x S1 x R
    Copsey, Keith
    Horowitz, Gary T.
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (06):
  • [35] S1 AND S2 FLUORESCENCE OF FLUORANTHENE
    PHILEN, DL
    HEDGES, RM
    CHEMICAL PHYSICS LETTERS, 1976, 43 (02) : 358 - 362
  • [36] Two wave functions and dS/CFT on S1 x S2
    Conti, Gabriele
    Hertog, Thomas
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (06):
  • [37] The diffeotopy group of S1 x S2 via contact topology
    Ding, Fan
    Geiges, Hansjoerg
    COMPOSITIO MATHEMATICA, 2010, 146 (04) : 1096 - 1112
  • [38] INVOLUTIONS ON S1 X S2 AND OTHER 3-MANIFOLDS
    TOLLEFSO.JL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 183 (SEP) : 139 - 152
  • [39] Regularity of Cauchy horizons in S2 x S1 Gowdy spacetimes
    Hennig, Joerg
    Ansorg, Marcus
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (06)
  • [40] LYAPUNOV GRAPHS OF NONSINGULAR SMALE FLOWS ON S1 x S2
    Yu, Bin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (02) : 767 - 783