Legendrian torus knots in S1 x S2

被引:4
|
作者
Chen, Feifei [1 ]
Ding, Fan [1 ,2 ]
Li, Youlin [3 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, LMAM, Beijing 100871, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Legendrian knot; torus knot; twisting number; rotation number; convex torus; LENS SPACES; LINKS;
D O I
10.1142/S0218216515500649
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify Legendrian torus knots in S-1 x S-2 with its standard tight contact structure up to Legendrian isotopy.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Coverings of torus knots in S2 x S1 and universals
    Nunez, Victor
    Ramirez-Losada, Enrique
    Rodriguez-Viorato, Jesus
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2017, 26 (08)
  • [2] Concordance of knots in S1 x S2
    Davis, Christopher W.
    Nagel, Matthias
    Park, JungHwan
    Ray, Arunima
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 : 59 - 84
  • [3] AUGMENTATIONS AND RULINGS OF LEGENDRIAN LINKS IN #k (S1 x S2)
    Leverson, Caitlin
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 288 (02) : 381 - 423
  • [4] Toroidal Dehn surgeries on knots in S1 x S2
    Lee, S
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2005, 14 (05) : 657 - 664
  • [5] ON THE S1 x S2 HOMFLY-PT INVARIANT AND LEGENDRIAN LINKS
    Lavrov, Mikhail
    Rutherford, Dan
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2013, 22 (08)
  • [6] Framed cord algebra invariant of knots in S1 x S2
    Cui, Shawn X.
    Wang, Zhenghan
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2015, 24 (14)
  • [7] Some knots in S1 x S2 with lens space surgeries
    Baker, Kenneth L.
    Buck, Dorothy
    Lecuona, Ana G.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (03) : 431 - 470
  • [8] MAZUR MANIFOLDS AND WRAPPING NUMBERS OF KNOTS IN S1 X S2
    LIVINGSTON, C
    HOUSTON JOURNAL OF MATHEMATICS, 1985, 11 (04): : 523 - 533
  • [9] Knots in S2 x S1 derived from Sym(2, R)
    Lee, SY
    Lim, Y
    Park, CY
    FUNDAMENTA MATHEMATICAE, 2000, 164 (03) : 241 - 252
  • [10] On the Kauffman bracket skein module of (S1 x S2) # (S1 x S2)
    Bakshi, Rhea Palak
    Kim, Seongjeong
    Shi, Shangjun
    Wang, Xiao
    JOURNAL OF ALGEBRA, 2025, 673 : 103 - 137