Palmitic Acid-Induced Podocyte Apoptosis via the Reactive Oxygen Species-Dependent Mitochondrial Pathway

被引:41
|
作者
Liu, Ting [1 ]
Chen, Xue-mei [2 ]
Sun, Ji-ye [1 ]
Jiang, Xu-shun [1 ]
Wu, Yue [1 ]
Yang, Shan [2 ]
Huang, Hui-zhe [3 ]
Ruan, Xiong-zhong [4 ,5 ]
Du, Xiao-gang [1 ,6 ]
机构
[1] Chongqing Med Univ, Affiliated Hosp 1, Dept Nephrol, Youyi Rd 1, Chongqing 400042, Peoples R China
[2] Chongqing Med Univ, Affiliated Hosp 1, Emergency Dept, Chongqing, Peoples R China
[3] Chongqing Med Univ, Affiliated Hosp 2, Chongqing, Peoples R China
[4] UCL, Ctr Nephrol, Royal Free & Univ Coll Med Sch, Royal Free Campus, London, England
[5] Chongqing Med Univ, Minist Educ, Key Lab Mol Biol Infect Dis, Ctr Lipid Res, Chongqing, Peoples R China
[6] Chongqing Key Lab Translat Med Major Metab Dis, Chongqing, Peoples R China
来源
KIDNEY & BLOOD PRESSURE RESEARCH | 2018年 / 43卷 / 01期
基金
中国国家自然科学基金;
关键词
Palmitic acid (PA); Podocyte; Apoptosis; Reactive oxygen species (ROS); Mitochondria; ENDOPLASMIC-RETICULUM STRESS; LIPOPROTEIN METABOLISM; CELL; AUTOPHAGY; SURVIVAL; CANCER; HYPERLIPIDEMIA; ABNORMALITIES; CONTRIBUTES; INHIBITION;
D O I
10.1159/000487673
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Background/Aims: Chronic kidney disease (CKD) is often accompanied by hyperlipidemia, which accelerates progression of the disease. Podocyte injury can lead to dysfunction of the glomerular filtration barrier, which is associated with proteinuria, a risk marker for the progression of CKD. Our previous studies demonstrated that palmitic acid (PA) can induce podocyte apoptosis; however, the underlying mechanisms are unclear. In the present study, we investigated the specific molecular mechanisms of PA-induced apoptosis in cultured podocytes. Methods: We cultured mouse podocytes and treated them with PA. Then, cell viability was measured using the Cell Counting Kit-8 colorimetric assay, lipid uptake was assessed by Oil Red O staining and boron-dipyrromethene staining, apoptosis was measured by flow cytometry, mitochondrial injury was assessed by JC-1 staining and transmission electron microscopy, and mitochondrial production of reactive oxygen species (ROS) was evaluated by fluorescence microscopy using the MitoSOX Red reagent. The effects of PA on the mitochondria-mediated caspase activation pathway were investigated by examining the expression of caspase-8, cleaved caspase-9, cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), B-cell lymphoma 2 (Bcl-2), Bax, Bid, cytochrome c, and Fas-associated protein with death domain (FADD) using western blotting. The translocation of Bax and cytochrome c were detected by immunofluorescence. Results: PA treatment significantly increased lipid accumulation and induced podocyte apoptosis. We investigated whether the two primary apoptosis signaling pathways (death receptor-mediated pathway and mitochondria-mediated pathway) were involved in the execution of PA-induced podocyte apoptosis, and found that the levels of FADD, caspase-8, and Bid did not significantly change during this process. Meanwhile, PA treatment induced an increase in Bax protein expression and a decrease in Bcl-2 protein expression, with Bax translocation to the mitochondria. Furthermore, PA treatment induced mitochondrial impairment, and triggered the release of cytochrome c from the mitochondria to cytosol, with a concomitant dose-dependent increase in the levels of cleaved caspase-9, cleaved caspase-3, and PARP. Meanwhile, PA treatment increased mitochondrial production of ROS, and the mitochondria-targeted antioxidant mitoTEMPO significantly ameliorated PA-induced podocyte apoptosis. Conclusion: Our findings indicated that PA induced caspase-dependent podocyte apoptosis through the mitochondrial pathway, and mitochondrial ROS production participated in this process, thus potentially contributing to podocyte injury. (C) 2018 The Author(s) Published by S. Karger AG, Basel
引用
收藏
页码:206 / 219
页数:14
相关论文
共 50 条
  • [1] Involvement of reactive oxygen species in the mitochondrial pathway of arachidonic acid-induced apoptosis
    Dymkowska, D.
    Wojtczak, L.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, : 491 - 491
  • [2] Berberine alleviates palmitic acid-induced podocyte apoptosis by reducing reactive oxygen species-mediated endoplasmic reticulum stress
    Xiang, Xing-Yang
    Liu, Ting
    Wu, Yue
    Jiang, Xu-Shun
    He, Jun-Ling
    Chen, Xue-Mei
    Du, Xiao-Gang
    MOLECULAR MEDICINE REPORTS, 2021, 23 (01)
  • [3] Role of reactive oxygen species in gallic acid-induced apoptosis
    Inoue, M
    Sakaguchi, N
    Isuzugawa, K
    Tani, H
    Ogihara, Y
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2000, 23 (10) : 1153 - 1157
  • [4] Loss of p53 Sensitizes Cells to Palmitic Acid-Induced Apoptosis by Reactive Oxygen Species Accumulation
    Yu, Guowu
    Luo, Hongwei
    Zhang, Na
    Wang, Yongbin
    Li, Yangping
    Huang, Huanhuan
    Liu, Yinghong
    Hu, Yufeng
    Liu, Hanmei
    Zhang, Junjie
    Tang, Yi
    Huang, Yubi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (24)
  • [5] Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway
    Su, YT
    Chang, HL
    Shyue, SK
    Hsu, SL
    BIOCHEMICAL PHARMACOLOGY, 2005, 70 (02) : 229 - 241
  • [6] Vancomycin induces reactive oxygen species-dependent apoptosis via mitochondrial cardiolipin peroxidation in renal tubular epithelial cells
    Sakamoto, Yuya
    Yano, Takahisa
    Hanada, Yuki
    Takeshita, Aki
    Inagaki, Fumika
    Masuda, Satohiro
    Matsunaga, Naoya
    Koyanagi, Satoru
    Ohdo, Shigehiro
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2017, 800 : 48 - 56
  • [7] Tanshinone I induces apoptosis and protective autophagy in human glioblastoma cells via a reactive oxygen species-dependent pathway
    Jian, Shangguan
    Liang Chen
    Lian Minxue
    Che Hongmin
    Tang Ronghua
    Fan Xiaoxuan
    Zhang Binbin
    Guo Shiwen
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2020, 45 (04) : 983 - 992
  • [8] Arsenic trioxide induces apoptosis through a reactive oxygen species-dependent pathway and loss of mitochondrial membrane potential in HeLa cells
    Woo, SH
    Park, IC
    Park, MJ
    Lee, HC
    Lee, SWJ
    Chun, YJ
    Lee, SH
    Hong, SI
    Rhee, CH
    INTERNATIONAL JOURNAL OF ONCOLOGY, 2002, 21 (01) : 57 - 63
  • [9] Oleic Acid and Eicosapentaenoic Acid Reverse Palmitic Acid-induced Insulin Resistance in Human HepG2 Cells via the Reactive Oxygen Species/JUN Pathway
    Sun, Yaping
    Wang, Jifeng
    Guo, Xiaojing
    Zhu, Nali
    Niu, Lili
    Ding, Xiang
    Xie, Zhensheng
    Chen, Xiulan
    Yang, Fuquan
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2021, 19 (05) : 754 - 771
  • [10] Oleic Acid and Eicosapentaenoic Acid Reverse Palmitic Acid-induced Insulin Resistance in Human HepG2 Cells via the Reactive Oxygen Species/JUN Pathway
    Yaping Sun
    Jifeng Wang
    Xiaojing Guo
    Nali Zhu
    Lili Niu
    Xiang Ding
    Zhensheng Xie
    Xiulan Chen
    Fuquan Yang
    Genomics,Proteomics & Bioinformatics, 2021, (05) : 754 - 771