Inference in High-Dimensional Parameter Space

被引:1
|
作者
O'Hare, Anthony [1 ]
机构
[1] Univ Stirling, Sch Nat Sci, Comp Sci & Math, Stirling FK9 4LA, Scotland
关键词
algorithms; Markov chains; MCMC; Monte Carlo likelihood; stochastic processes;
D O I
10.1089/cmb.2015.0086
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Model parameter inference has become increasingly popular in recent years in the field of computational epidemiology, especially for models with a large number of parameters. Techniques such as Approximate Bayesian Computation (ABC) or maximum/partial likelihoods are commonly used to infer parameters in phenomenological models that best describe some set of data. These techniques rely on efficient exploration of the underlying parameter space, which is difficult in high dimensions, especially if there are correlations between the parameters in the model that may not be known a priori. The aim of this article is to demonstrate the use of the recently invented Adaptive Metropolis algorithm for exploring parameter space in a practical way through the use of a simple epidemiological model.
引用
收藏
页码:997 / 1004
页数:8
相关论文
共 50 条
  • [1] A door to model reduction in high-dimensional parameter space
    Paillet, Charles
    Neron, David
    Ladeveze, Pierre
    [J]. COMPTES RENDUS MECANIQUE, 2018, 346 (07): : 524 - 531
  • [2] PyDREAM: high-dimensional parameter inference for biological models in python']python
    Shockley, Erin M.
    Vrugt, Jasper A.
    Lopez, Carlos F.
    [J]. BIOINFORMATICS, 2018, 34 (04) : 695 - 697
  • [3] On inference in high-dimensional regression
    Battey, Heather S.
    Reid, Nancy
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (01) : 149 - 175
  • [4] Topology of windows in the high-dimensional parameter space of chaotic maps
    Baptista, MS
    Grebogi, C
    Barreto, E
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (09): : 2681 - 2688
  • [5] ASYMPTOTIC INFERENCE FOR HIGH-DIMENSIONAL DATA
    Kuelbs, Jim
    Vidyashankar, Anand N.
    [J]. ANNALS OF STATISTICS, 2010, 38 (02): : 836 - 869
  • [6] High-dimensional simultaneous inference with the bootstrap
    Dezeure, Ruben
    Buhlmann, Peter
    Zhang, Cun-Hui
    [J]. TEST, 2017, 26 (04) : 685 - 719
  • [7] High-dimensional simultaneous inference with the bootstrap
    Ruben Dezeure
    Peter Bühlmann
    Cun-Hui Zhang
    [J]. TEST, 2017, 26 : 685 - 719
  • [8] High-dimensional empirical likelihood inference
    Chang, Jinyuan
    Chen, Song Xi
    Tang, Cheng Yong
    Wu, Tong Tong
    [J]. BIOMETRIKA, 2021, 108 (01) : 127 - 147
  • [9] Inference for High-Dimensional Exchangeable Arrays
    Chiang, Harold D.
    Kato, Kengo
    Sasaki, Yuya
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (543) : 1595 - 1605
  • [10] High-Dimensional Fuzzy Inference Systems
    Xue, Guangdong
    Wang, Jian
    Zhang, Kai
    Pal, Nikhil R.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (01): : 507 - 519