Technique for forcing high Reynolds number isotropic turbulence in physical space

被引:12
|
作者
Palmore, John A., Jr. [1 ]
Desjardins, Olivier [1 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
来源
PHYSICAL REVIEW FLUIDS | 2018年 / 3卷 / 03期
基金
美国国家科学基金会;
关键词
DIRECT NUMERICAL SIMULATIONS; HOMOGENEOUS TURBULENCE; SCHEME; FLOWS;
D O I
10.1103/PhysRevFluids.3.034605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Many common engineering problems involve the study of turbulence interaction with other physical processes. For many such physical processes, solutions are expressed most naturally in physical space, necessitating the use of physical space solutions. For simulating isotropic turbulence in physical space, linear forcing is a commonly used strategy because it produces realistic turbulence in an easy-to-implement formulation. However, the method resolves a smaller range of scales on the same mesh than spectral forcing. We propose an alternative approach for turbulence forcing in physical space that uses the low-pass filtered velocity field as the basis of the forcing term. This method is shown to double the range of scales captured by linear forcing while maintaining the flexibility and low computational cost of the original method. This translates to a 60% increase of the Taylor microscale Reynolds number on the same mesh. An extension is made to scalar mixing wherein a scalar field is forced to have an arbitrarily chosen, constant variance. Filtered linear forcing of the scalar field allows for control over the length scale of scalar injection, which could be important when simulating scalar mixing.
引用
收藏
页数:18
相关论文
共 50 条
  • [12] An attempt to realize experimental isotropic turbulence at low Reynolds number
    Birouk, M
    Sarh, B
    Gökalp, I
    [J]. FLOW TURBULENCE AND COMBUSTION, 2003, 70 (1-4) : 325 - 348
  • [13] Scale invariance in finite Reynolds number homogeneous isotropic turbulence
    Djenidi, L.
    Antonia, R. A.
    Tang, S. L.
    [J]. JOURNAL OF FLUID MECHANICS, 2019, 864 : 244 - 272
  • [14] Reynolds number dependence of relative dispersion statistics in isotropic turbulence
    Sawford, Brian L.
    Yeung, P. K.
    Hackl, Jason F.
    [J]. PHYSICS OF FLUIDS, 2008, 20 (06)
  • [15] Particle Reynolds number effects on settling ellipsoids in isotropic turbulence
    Froehlich, Konstantin
    Farmand, Pooria
    Pitsch, Heinz
    Meinke, Matthias
    Schroeder, Wolfgang
    [J]. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2021, 139
  • [16] Reynolds number effect on the velocity increment skewness in isotropic turbulence
    Bos, Wouter J. T.
    Chevillard, Laurent
    Scott, Julian F.
    Rubinstein, Robert
    [J]. PHYSICS OF FLUIDS, 2012, 24 (01)
  • [17] An Attempt to Realize Experimental Isotropic Turbulence at Low Reynolds Number
    Madjid Birouk
    Brahim Sarh
    Iskender Gökalp
    [J]. Flow, Turbulence and Combustion, 2003, 70 : 325 - 348
  • [18] Reynolds and Prandtl number scaling of viscous heating in isotropic turbulence
    Pushkarev, Andrey
    Balarac, Guillaume
    Bos, Wouter J. T.
    [J]. PHYSICAL REVIEW FLUIDS, 2017, 2 (08):
  • [19] HIGH REYNOLDS-NUMBER TURBULENCE
    LESIEUR, M
    [J]. JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1986, : 73 - 93
  • [20] SPECTRA OF TURBULENCE AT HIGH REYNOLDS NUMBER
    GIBSON, MM
    [J]. NATURE, 1962, 195 (4848) : 1281 - +