Generalized topological function spaces and a classification of generalized computer topological spaces

被引:3
|
作者
Georgiou, D. N. [1 ]
Han, Sang-Eon [2 ]
机构
[1] Univ Patras, Dept Math, Patras 26500, Greece
[2] Chonbuk Natl Univ, Inst Pure & Appl Math, Fac Liberal Educ, Jeonju Si 561756, Jeollabuk Do, South Korea
基金
新加坡国家研究基金会;
关键词
Digital topology; Khalimsky topology; digital continuity; digital homeomorphism; N-compatible; function space; HOMEOMORPHISMS; IMAGE;
D O I
10.2298/FIL1203539G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce several kinds of generalized continuities and homeomorphisms in computer topology and investigate some properties of function spaces of these generalized continuous maps and classify generalized computer topological spaces up to each of these generalized homeomorphisms.
引用
收藏
页码:539 / 552
页数:14
相关论文
共 50 条
  • [11] Introduction to generalized topological spaces
    Zvina, Irina
    APPLIED GENERAL TOPOLOGY, 2011, 12 (01): : 49 - 66
  • [12] μ-Separations in generalized topological spaces
    G. E. Xun
    G. E. Ying
    Applied Mathematics-A Journal of Chinese Universities, 2010, 25 : 243 - 252
  • [13] (δ,δ')-continuity on generalized topological spaces
    Min, W. K.
    ACTA MATHEMATICA HUNGARICA, 2010, 129 (04) : 350 - 356
  • [14] On generalized topological spaces II
    Piekosz, Artur
    ANNALES POLONICI MATHEMATICI, 2013, 108 (02) : 185 - 214
  • [15] Generalized primal topological spaces
    Al-Saadi, Hanan
    Al-Malki, Huda
    AIMS MATHEMATICS, 2023, 8 (10): : 24162 - 24175
  • [16] ζ μ -sets in generalized topological spaces
    Boonpok, C.
    ACTA MATHEMATICA HUNGARICA, 2012, 134 (03) : 269 - 285
  • [17] TD-SPACES IN GENERALIZED TOPOLOGICAL SPACES
    Kang, Chul
    KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (04): : 479 - 484
  • [18] Baire generalized topological spaces, generalized metric spaces and infinite games
    Ewa Korczak-Kubiak
    Anna Loranty
    Ryszard J. Pawlak
    Acta Mathematica Hungarica, 2013, 140 : 203 - 231
  • [19] Baire generalized topological spaces, generalized metric spaces and infinite games
    Korczak-Kubiak, E.
    Loranty, A.
    Pawlak, R. J.
    ACTA MATHEMATICA HUNGARICA, 2013, 140 (03) : 203 - 231
  • [20] On Different Types of Monotonically μω-Spaces in Generalized Topological Spaces
    Abushaheen, Fuad A.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (02): : 537 - 551