Saliency detection using midlevel visual cues

被引:13
|
作者
Yu, Jin-Gang [1 ]
Tian, Jinwen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Pattern Recognit & Artificial Intelligence, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1364/OL.37.004994
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This Letter presents a computational model for saliency detection in natural images. While existing approaches usually make use of low-level or high-level visual features for establishing the saliency models, our method relies on midlevel visual cues, i.e., the superpixel representation of the image. In the proposed approach, the given image is first partitioned into superpixels. A fully connected superpixel graph is then constructed, and the random walk on the graph is adopted to measure saliency. In addition, a scheme based on multiple segmentations is used for multiscale processing. Our model has the advantage of generating high-resolution saliency maps with well-defined object borders. Experimental results on publicly available datasets demonstrate the proposed model can outperform the compared state-of-the-art saliency models. (C) 2012 Optical Society of America
引用
收藏
页码:4994 / 4996
页数:3
相关论文
共 50 条
  • [11] Visual Saliency Detection Via Background Features and Object-Location Cues
    Jian, Muwei
    Wang, Jing
    Yu, Hui
    2019 25TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC), 2019, : 334 - 337
  • [12] Visual saliency detection by integrating spatial position prior of object with background cues
    Jian, Muwei
    Wang, Jing
    Yu, Hui
    Wang, Guodong
    Meng, Xianjing
    Yang, Lu
    Dong, Junyu
    Yin, Yilong
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 168 (168)
  • [13] VISUAL SALIENCY DETECTION USING VIDEO DECOMPOSITION
    Bhattacharya, Saumik
    Gupta, Sumana
    Venkatesh, K. S.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 684 - 688
  • [14] Visual saliency detection using information divergence
    Hou, Weilong
    Gao, Xinbo
    Tao, Dacheng
    Li, Xuelong
    PATTERN RECOGNITION, 2013, 46 (10) : 2658 - 2669
  • [15] Visual Saliency Detection Using Spatiotemporal Decomposition
    Bhattacharya, Saumik
    Venkatesh, K. Subramanian
    Gupta, Sumana
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) : 1665 - 1675
  • [16] Anomaly Detection via Midlevel Visual Attributes
    Xiao, Tan
    Zhang, Chao
    Zha, Hongbin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [17] UNSUPERVISED ESTIMATION OF UNCERTAINTY FOR VIDEO SALIENCY DETECTION USING TEMPORAL CUES
    Alshawi, Tariq
    Long, Zhiling
    AlRegib, Ghassan
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 1200 - 1204
  • [18] Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency Detection
    Alshawi, Tariq
    Long, Zhiling
    AlRegib, Ghassan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) : 2818 - 2827
  • [19] Visual saliency object detection using sparse learning
    Nasiripour, Reza
    Farsi, Hassan
    Mohamadzadeh, Sajad
    IET IMAGE PROCESSING, 2019, 13 (13) : 2436 - 2447
  • [20] Visual saliency detection using information contents weighting
    Duan, Qichang
    Akram, Tallha
    Duan, Pan
    Wang, Xiaogang
    OPTIK, 2016, 127 (19): : 7418 - 7430