Saliency detection using midlevel visual cues

被引:13
|
作者
Yu, Jin-Gang [1 ]
Tian, Jinwen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Pattern Recognit & Artificial Intelligence, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1364/OL.37.004994
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This Letter presents a computational model for saliency detection in natural images. While existing approaches usually make use of low-level or high-level visual features for establishing the saliency models, our method relies on midlevel visual cues, i.e., the superpixel representation of the image. In the proposed approach, the given image is first partitioned into superpixels. A fully connected superpixel graph is then constructed, and the random walk on the graph is adopted to measure saliency. In addition, a scheme based on multiple segmentations is used for multiscale processing. Our model has the advantage of generating high-resolution saliency maps with well-defined object borders. Experimental results on publicly available datasets demonstrate the proposed model can outperform the compared state-of-the-art saliency models. (C) 2012 Optical Society of America
引用
收藏
页码:4994 / 4996
页数:3
相关论文
共 50 条
  • [1] VISUAL SALIENCY DETECTION USING FEATURE ACTIVITY WEIGHTED DECORRELATION CUES
    Qi, Shengxiang
    Yu, Jin-Gang
    Zhao, Ji
    Ma, Jie
    Tian, Jinwen
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1140 - 1144
  • [2] Superpixel Tensor Pooling for Visual Tracking Using Multiple Midlevel Visual Cues Fusion
    Wu, Chong
    Zhang, Le
    Cao, Jiawang
    Yan, Hong
    IEEE ACCESS, 2019, 7 : 147462 - 147469
  • [3] Midlevel cues mean shift visual tracking algorithm based on target-background saliency confidence map
    Hu, Zhengping
    Xie, Ronglu
    Wang, Meng
    Sun, Zhe
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (20) : 21265 - 21280
  • [4] Midlevel cues mean shift visual tracking algorithm based on target-background saliency confidence map
    Zhengping Hu
    Ronglu Xie
    Meng Wang
    Zhe Sun
    Multimedia Tools and Applications, 2017, 76 : 21265 - 21280
  • [5] Efficient Visual Saliency Detection via Multi-Cues
    Wu, Junfeng
    Yu, Hong
    Sun, Jianwei
    Qu, Wenyu
    Cui, Zhen
    IEEE ACCESS, 2019, 7 : 14728 - 14735
  • [6] Saliency Detection Using Texture and Local Cues
    Qi, Qiang
    Jian, Muwei
    Yin, Yilong
    Dong, Junyu
    Zhang, Wenyin
    Yu, Hui
    COMPUTER VISION, PT III, 2017, 773 : 689 - 699
  • [7] A MULTI-CUES BASED APPROACH FOR VISUAL SALIENCY DETECTION
    Zhang, Qiaorong
    Wang, Yingfeng
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2021, 17 (04): : 1435 - 1446
  • [8] Video Saliency Detection Using Spatiotemporal Cues
    Chen, Yu
    Xiao, Jing
    Hu, Liuyi
    Chen, Dan
    Wang, Zhongyuan
    Li, Dengshi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (09): : 2201 - 2208
  • [9] Image saliency detection using Gabor texture cues
    Chen, Zhi-hua
    Liu, Yi
    Sheng, Bin
    Liang, Jian-ning
    Zhang, Jing
    Yuan, Yu-bo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (24) : 16943 - 16958
  • [10] Image saliency detection using Gabor texture cues
    Zhi-hua Chen
    Yi Liu
    Bin Sheng
    Jian-ning Liang
    Jing Zhang
    Yu-bo Yuan
    Multimedia Tools and Applications, 2016, 75 : 16943 - 16958