On convenient parametrization of boundary conditions for some models of quantum mechanics

被引:1
|
作者
Kapuscik, E
Kijanka, A
Podlaska, J
机构
[1] Univ Lodz, Dept Phys, PL-90236 Lodz, Poland
[2] Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, Dept Theoret Astrophys, PL-31342 Krakow, Poland
关键词
D O I
10.1007/s10582-006-0023-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
On the example of some simple models of quantum mechanics we present a convenient way of parametrization of the most general boundary condition. In particular, the proposed parametrization allows investigating the influence on the energy spectra of boundary conditions, which break the natural symmetries of the Schrodinger equation.
引用
收藏
页码:1443 / 1446
页数:4
相关论文
共 50 条
  • [41] Analysis of HERA data with a PDF parametrization inspired by quantum statistical mechanics
    Bonvini, Marco
    Buccella, Franco
    Giuli, Francesco
    Silvetti, Federico
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (05):
  • [42] Cosmology with a decaying vacuum energy parametrization derived from quantum mechanics
    Szydlowski, M.
    Stachowski, A.
    Urbanowski, K.
    7TH INTERNATIONAL WORKSHOP DICE2014 SPACETIME - MATTER - QUANTUM MECHANICS, 2015, 626
  • [43] SOME REMARKS ON QUANTUM MECHANICS
    Dell'Antonio, Gianfausto
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (02)
  • [44] Quantum Mechanics on Some Supermanifolds
    Mezincescu, Luca
    QUANTUM MECHANICS OF FUNDAMENTAL SYSTEMS: THE QUEST FOR BEAUTY AND SIMPLICITY, CLAUDIO BUNSTER FESTSCHRIFT, 2009, : 181 - 192
  • [45] Vector Models in Quantum Mechanics
    Jones-Smith, Katherine
    Kalveks, Rudolph
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (07) : 2187 - 2195
  • [46] FINITELY MANY SPHERE INTERACTIONS IN QUANTUM-MECHANICS - NONSEPARATED BOUNDARY-CONDITIONS
    DABROWSKI, L
    SHABANI, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (10) : 2241 - 2244
  • [47] Some counterexamples in quantum mechanics
    Razavy, M
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 2001, 25 (A2): : 329 - 353
  • [48] A "general boundary" formulation for quantum mechanics and quantum gravity
    Oeckl, R
    PHYSICS LETTERS B, 2003, 575 (3-4) : 318 - 324
  • [49] PARAMETRIZATION FOR NON-LINEAR PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS
    Ronto, Miklos
    Marynets, Kateryna
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2012, (99) : 1 - 23
  • [50] Some Remarks on Quantum Logics and Quantum Mechanics
    Andrey Grib
    Advances in Applied Clifford Algebras, 2018, 28