MAXIMUM PRINCIPLES FOR A CLASS OF GENERALIZED TIME-FRACTIONAL DIFFUSION EQUATIONS

被引:6
|
作者
Zeng, Shengda [1 ,3 ]
Migorski, Stanislaw [2 ,3 ]
Van Thien Nguyen [4 ]
Bai, Yunru [3 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Peoples R China
[2] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[3] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[4] FPT Univ, Dept Math, Educ Zone, Thach Ward, Hoa Lac High Tech Pk,Km29 Thang Long Highway, Hanoi, Vietnam
基金
欧盟地平线“2020”;
关键词
maximum principles; extremum principles; variable-order fractional calculus; time-space fractional diffusion equation; Riesz-Caputo fractional derivative;
D O I
10.1515/fca-2020-0041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two significant inequalities for generalized time fractional derivatives at extreme points are obtained. Then, we apply the inequalities to establish the maximum principles for multi-term time-space fractional variable-order operators. Finally, we employ the principles to investigate two kinds of diffusion equations involving generalized time-fractional Caputo derivatives and space-fractional Riesz-Caputo derivatives.
引用
收藏
页码:822 / 836
页数:15
相关论文
共 50 条
  • [31] Stability and boundedness of solutions of the initial value problem for a class of time-fractional diffusion equations
    Wen, Yanhua
    Zhou, Xian-Feng
    Wang, Jun
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [32] Stability and boundedness of solutions of the initial value problem for a class of time-fractional diffusion equations
    Yanhua Wen
    Xian-Feng Zhou
    Jun Wang
    Advances in Difference Equations, 2017
  • [33] On the invariant solutions of space/time-fractional diffusion equations
    Bahrami, F.
    Najafi, R.
    Hashemi, M. S.
    INDIAN JOURNAL OF PHYSICS, 2017, 91 (12) : 1571 - 1579
  • [34] CAUCHY PROBLEMS FOR THE TIME-FRACTIONAL DEGENERATE DIFFUSION EQUATIONS
    Borikhanov, M. B.
    Smadiyeva, A. G.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 117 (01): : 15 - 23
  • [35] Existence and regularity of solutions to time-fractional diffusion equations
    Mu, Jia
    Ahmad, Bashir
    Huang, Shuibo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 985 - 996
  • [36] Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives
    Al-Refai, Mohammed
    Luchko, Yuri
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 40 - 51
  • [37] On the solutions of time-fractional reaction-diffusion equations
    Rida, S. Z.
    El-Sayed, A. M. A.
    Arafa, A. A. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) : 3847 - 3854
  • [38] Homogenization of time-fractional diffusion equations with periodic coefficients
    Hu, Jiuhua
    Li, Guanglian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 408 (408)
  • [39] On the invariant solutions of space/time-fractional diffusion equations
    Fariba Bahrami
    Ramin Najafi
    Mir Sajjad Hashemi
    Indian Journal of Physics, 2017, 91 : 1571 - 1579
  • [40] On a backward problem for inhomogeneous time-fractional diffusion equations
    Nguyen Hoang Luc
    Le Nhat Huynh
    Nguyen Huy Tuan
    Le Dinh Long
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1317 - 1333