MAXIMUM PRINCIPLES FOR A CLASS OF GENERALIZED TIME-FRACTIONAL DIFFUSION EQUATIONS

被引:6
|
作者
Zeng, Shengda [1 ,3 ]
Migorski, Stanislaw [2 ,3 ]
Van Thien Nguyen [4 ]
Bai, Yunru [3 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Peoples R China
[2] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[3] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[4] FPT Univ, Dept Math, Educ Zone, Thach Ward, Hoa Lac High Tech Pk,Km29 Thang Long Highway, Hanoi, Vietnam
基金
欧盟地平线“2020”;
关键词
maximum principles; extremum principles; variable-order fractional calculus; time-space fractional diffusion equation; Riesz-Caputo fractional derivative;
D O I
10.1515/fca-2020-0041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two significant inequalities for generalized time fractional derivatives at extreme points are obtained. Then, we apply the inequalities to establish the maximum principles for multi-term time-space fractional variable-order operators. Finally, we employ the principles to investigate two kinds of diffusion equations involving generalized time-fractional Caputo derivatives and space-fractional Riesz-Caputo derivatives.
引用
收藏
页码:822 / 836
页数:15
相关论文
共 50 条
  • [1] Maximum Principles for a Class of Generalized Time-Fractional Diffusion Equations
    Shengda Zeng
    Stanisław Migórski
    Thien Van Nguyen
    Yunru Bai
    Fractional Calculus and Applied Analysis, 2020, 23 : 822 - 836
  • [2] A class of time-fractional diffusion equations with generalized fractional derivatives
    Alikhanov, Anatoly A.
    Huang, Chengming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 414
  • [3] Maximum principles for time-fractional Caputo-Katugampola diffusion equations
    Cao, Liang
    Kong, Hua
    Zeng, Sheng-Da
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 2257 - 2267
  • [4] SUBORDINATION IN A CLASS OF GENERALIZED TIME-FRACTIONAL DIFFUSION-WAVE EQUATIONS
    Bazhlekova, Emilia
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (04) : 869 - 900
  • [5] Subordination in a Class of Generalized Time-Fractional Diffusion-Wave Equations
    Bazhlekova Emilia
    Fractional Calculus and Applied Analysis, 2018, 21 : 869 - 900
  • [6] Maximum principle for the generalized time-fractional diffusion equation
    Luchko, Yury
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 218 - 223
  • [7] gL1 Scheme for Solving a Class of Generalized Time-Fractional Diffusion Equations
    Li, Xuhao
    Wong, Patricia J. Y.
    MATHEMATICS, 2022, 10 (08)
  • [8] THE MAXIMUM PRINCIPLE FOR TIME-FRACTIONAL DIFFUSION EQUATIONS AND ITS APPLICATION
    Brunner, Hermann
    Han, Houde
    Yin, Dongsheng
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (10) : 1307 - 1321
  • [9] MAXIMUM PRINCIPLE AND ITS APPLICATION FOR THE TIME-FRACTIONAL DIFFUSION EQUATIONS
    Luchko, Yury
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (01) : 110 - 124
  • [10] Maximum principle and its application for the time-fractional diffusion equations
    Yury Luchko
    Fractional Calculus and Applied Analysis, 2011, 14 : 110 - 124