Direct Observation of Two Electron Holes in a Hematite Photoanode during Photoelectrochemical Water Splitting

被引:126
|
作者
Braun, Artur [1 ]
Sivula, Kevin [2 ]
Bora, Debajeet K. [1 ,3 ,5 ]
Zhu, Junfa [4 ]
Zhang, Liang [4 ,5 ]
Graetzel, Michael [2 ]
Guo, Jinghua [5 ]
Constable, Edwin C. [3 ]
机构
[1] Empa Swiss Fed Labs Mat Sci & Technol, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland
[2] Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland
[3] Univ Basel, Dept Chem, CH-4056 Basel, Switzerland
[4] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
[5] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2012年 / 116卷 / 32期
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
X-RAY-ABSORPTION; OXYGEN K-EDGE; ALPHA-FE2O3; PHOTOELECTRODES; OXIDE; SPECTROSCOPY; PERFORMANCE; CELLS; PHOTOCATALYST; IMPEDANCE; OXIDATION;
D O I
10.1021/jp304254k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Visible light active photoelectrodes for hydrogen generation by solar photoelectrochemical water splitting have been under scrutiny for many decades. In particular, the role of electron holes and charge transfer remains controversial. We have investigated the oxygen evolution of hematite in alkaline aqueous electrolyte under a bias potential during visible light illumination in a photoelectrochemical cell operando with soft X-ray (O 1s) spectroscopy. Only under these conditions, two new spectral signatures evolve in the valence band, which we identify as an O 2p hole transition into the charge transfer band and an Fe 3d type hole into the upper Hubbard band. Quantitative analysis of their spectral weight and comparison with the photocurrent reveals that both types of holes, contrary to earlier speculations and common perception, contribute to the photocurrent.
引用
收藏
页码:16870 / 16875
页数:6
相关论文
共 50 条
  • [31] Extremely stable bare hematite photoanode for solar water splitting
    Dias, Paula
    Vilanova, Antonio
    Lopes, Tania
    Andrade, Luisa
    Mendes, Adelio
    [J]. NANO ENERGY, 2016, 23 : 70 - 79
  • [32] Performance enhancement of hematite photoanode with oxygen defects for water splitting
    Xiao, Jingran
    Zhao, Feigang
    Zhong, Jun
    Huang, Zhongliang
    Fan, Longlong
    Peng, Lingling
    Zhou, Shu-Feng
    Zhan, Guowu
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 402 (402)
  • [33] Enhanced efficiency of hematite photoanode for water splitting with the doping of Ge
    Zhao, Le
    Xiao, Jingran
    Huang, Huali
    Huang, Qiuyang
    Zhao, Yicheng
    Li, Yongdan
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (28) : 12646 - 12652
  • [34] Nanostructured hematite thin films for photoelectrochemical water splitting
    Maabong, Kelebogile
    Machatine, Augusto G. J.
    Mwankemwa, Benard S.
    Braun, Artur
    Bora, Debajeet K.
    Toth, Rita
    Diale, Mmantsae
    [J]. PHYSICA B-CONDENSED MATTER, 2018, 535 : 67 - 71
  • [35] Activation of Hematite Nanorod Arrays for Photoelectrochemical Water Splitting
    Morrish, Rachel
    Rahman, Mahfujur
    MacElroy, J. M. Don
    Wolden, Colin A.
    [J]. CHEMSUSCHEM, 2011, 4 (04) : 474 - 479
  • [36] Activation of hematite nanorod arrays for photoelectrochemical water splitting
    Morrish, Rachel
    Wolden, Colin
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [37] Morphology control of the hematite photoanodes for photoelectrochemical water splitting
    Wang, Yujie
    Rong, Mingyue
    Zheng, Jiandong
    Rui, Zebao
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 31667 - 31677
  • [38] Facial boron incorporation in hematite photoanode for enhanced photoelectrochemical water oxidation
    Liu, Anan
    Zhang, Yuchao
    Ma, Wanhong
    Song, Wenjing
    Chen, Chuncheng
    Zhao, Jincai
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2018, 355 : 290 - 297
  • [39] Improving the charge separation efficiency by embedding the electron transfer layer of hematite photoanode for photoelectrochemical water oxidation
    Bi, Lingling
    Liang, Xiaobo
    Zhang, Wenhao
    Wu, Zhenzhou
    Zhan, Jiahao
    Xie, Tengfeng
    Zhang, Lijing
    Xu, Weichuan
    Jiang, Jinlong
    Wu, Mei
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 683
  • [40] Composition modulation of a hematite photoanode for highly efficient photoelectrochemical water oxidation
    Wang, Jingnan
    Lin, Kaijie
    Cao, Yu
    Ran, Jianhua
    Liu, Xueqin
    Chen, Yihuang
    Li, Yingzhe
    Hu, Xiaoqin
    [J]. CRYSTENGCOMM, 2024, 26 (10) : 1399 - 1409