Computational Screening of Metal-Organic Framework Membranes for the Separation of 15 Gas Mixtures

被引:32
|
作者
Yang, Wenyuan [1 ]
Liang, Hong [1 ]
Peng, Feng [1 ,2 ]
Liu, Zili [1 ]
Liu, Jie [3 ]
Qiao, Zhiwei [1 ,2 ]
机构
[1] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
[3] Wuhan Univ Technol, Sch Chem & Chem Engn, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
metal-organic framework; gas separation; machine learning; molecular simulation; linear dimension reduction; TEMPERATURE; PERFORMANCE; EQUILIBRIA; ADSORPTION; DIOXIDE; CAPTURE;
D O I
10.3390/nano9030467
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Monte Carlo and molecular dynamics simulations are employed to screen the separation performance of 6013 computation-ready, experimental metal-organic framework membranes (CoRE-MOFMs) for 15 binary gas mixtures. After the univariate analysis, principal component analysis is used to reduce 44 performance metrics of 15 mixtures to a 10-dimension set. Then, four machine learning algorithms (decision tree, random forest, support vector machine, and back propagation neural network) are combined with k times repeated k-fold cross-validation to predict and analyze the relationships between six structural feature descriptors and 10 principal components. Based on the linear correlation value R and the root mean square error predicted by the machine learning algorithm, the random forest algorithm is the most suitable for the prediction of the separation performance of CoRE-MOFMs. One descriptor, pore limiting diameter, possesses the highest weight importance for each principal component index. Finally, the 30 best CoRE-MOFMs for each binary gas mixture are screened out. The high-throughput computational screening and the microanalysis of high-dimensional performance metrics can provide guidance for experimental research through the relationships between the multi-structure variables and multi-performance variables.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Preparation and Gas Separation Properties of Metal Organic Framework Membranes
    Dou, Zhongshang
    Cai, Jianfeng
    Cui, Yuanjing
    Yu, Jiancan
    Xia, Tifeng
    Yang, Yu
    Qian, Guodong
    [J]. ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2015, 641 (05): : 792 - 796
  • [32] Exploring the Effect of Iron Metal-Organic Framework Particles in Polylactic Acid Membranes for the Azeotropic Separation of Organic/Organic Mixtures by Pervaporation
    Msahel, Asma
    Galiano, Francesco
    Pilloni, Martina
    Russo, Francesca
    Hafiane, Amor
    Castro-Munoz, Roberto
    Kumar, Vijay Bhooshan
    Gedanken, Aharon
    Ennas, Guido
    Porat, Ze'ev
    Scano, Alessandra
    Ben Hamouda, Sofiane
    Figoli, Alberto
    [J]. MEMBRANES, 2021, 11 (01) : 1 - 18
  • [33] Computational Predictions for Effective Separation of Xenon/Krypton Gas Mixtures in the MFM Family of Metal-Organic Frameworks
    Cooley, Isabel
    Efford, Louise
    Besley, Elena
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (28): : 11475 - 11486
  • [34] Porous metal-organic framework materials for gas storage and separation
    Chen, Banglin
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [35] A microporous metal-organic framework for gas chromatographic separation of alkanes
    Chen, Banglin
    Liang, Chengdu, Sr.
    Yang, Jun
    Contreras, Damacio Steven
    Dai, Sheng
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [36] Computational screening of metal-organic frameworks for CO2 separation
    Jiang, Jianwen
    [J]. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 57 - 64
  • [37] Electrochemical synthesis of continuous metal-organic framework membranes for separation of hydrocarbons
    Zhou, Sheng
    Shekhah, Osama
    Jia, Jiangtao
    Czaban-Jozwiak, Justyna
    Bhatt, Prashant M.
    Ramirez, Adrian
    Gascon, Jorge
    Eddaoudi, Mohamed
    [J]. NATURE ENERGY, 2021, 6 (09) : 882 - 891
  • [38] Metal-organic Framework Membranes for Efficient Separation of Small Molecules and Ions
    Jiang, Xiao-Tian
    Yin, Qi
    Liu, Tian-Fu
    Cao, Rong
    [J]. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (08): : 1691 - 1707
  • [39] Metal-organic framework based membranes for selective separation of target ions
    Zhao, Yan
    Wu, Mengyao
    Guo, Yi
    Mamrol, Natalie
    Yang, Xing
    Gao, Congjie
    Van Der Bruggen, Bart
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2021, 634
  • [40] Solvent-free route for metal-organic framework membranes growth aiming for efficient gas separation
    Hou, Jiamin
    Hong, Xilu
    Zhou, Sheng
    Wei, Yanying
    Wang, Haihui
    [J]. AICHE JOURNAL, 2019, 65 (02) : 712 - 722