Computational Screening of Metal-Organic Framework Membranes for the Separation of 15 Gas Mixtures

被引:32
|
作者
Yang, Wenyuan [1 ]
Liang, Hong [1 ]
Peng, Feng [1 ,2 ]
Liu, Zili [1 ]
Liu, Jie [3 ]
Qiao, Zhiwei [1 ,2 ]
机构
[1] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
[3] Wuhan Univ Technol, Sch Chem & Chem Engn, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
metal-organic framework; gas separation; machine learning; molecular simulation; linear dimension reduction; TEMPERATURE; PERFORMANCE; EQUILIBRIA; ADSORPTION; DIOXIDE; CAPTURE;
D O I
10.3390/nano9030467
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Monte Carlo and molecular dynamics simulations are employed to screen the separation performance of 6013 computation-ready, experimental metal-organic framework membranes (CoRE-MOFMs) for 15 binary gas mixtures. After the univariate analysis, principal component analysis is used to reduce 44 performance metrics of 15 mixtures to a 10-dimension set. Then, four machine learning algorithms (decision tree, random forest, support vector machine, and back propagation neural network) are combined with k times repeated k-fold cross-validation to predict and analyze the relationships between six structural feature descriptors and 10 principal components. Based on the linear correlation value R and the root mean square error predicted by the machine learning algorithm, the random forest algorithm is the most suitable for the prediction of the separation performance of CoRE-MOFMs. One descriptor, pore limiting diameter, possesses the highest weight importance for each principal component index. Finally, the 30 best CoRE-MOFMs for each binary gas mixture are screened out. The high-throughput computational screening and the microanalysis of high-dimensional performance metrics can provide guidance for experimental research through the relationships between the multi-structure variables and multi-performance variables.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Large-Scale Computational Screening of Metal-Organic Framework Membranes for Ethane/Ethylene Separation
    Cheng, Min
    Wang, Shihui
    Luo, Lei
    Zhou, Li
    Bi, Kexin
    Dai, Yiyang
    Ji, Xu
    [J]. ACTA CHIMICA SINICA, 2022, 80 (09) : 1277 - 1288
  • [2] Metal-Organic Framework Membranes: From Fabrication to Gas Separation
    Shekhah, Osama
    Chernikova, Valeriya
    Belmabkhout, Youssef
    Eddaoudi, Mohamed
    [J]. CRYSTALS, 2018, 8 (11)
  • [3] Metal-organic framework based membranes for gas separation processes
    Neves, L. A.
    Barreto, N.
    Crespo, J. C.
    Coelhoso, I. M.
    [J]. EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 1991 - 1992
  • [4] High-throughput computational screening of metal-organic framework membranes for upgrading of natural gas
    Qiao, Zhiwei
    Xu, Qisong
    Jiang, Jianwen
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2018, 551 : 47 - 54
  • [5] Gas separation properties of metal-organic framework membranes: A comparison with zeolite membranes
    Lin, Jerry
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [6] Recent advances and challenges of metal-organic framework membranes for gas separation
    Kang, Zixi
    Fan, Lili
    Sun, Daofeng
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (21) : 10073 - 10091
  • [7] Design of metal-organic framework membranes towards ultimate gas separation
    Yanwei Sun
    Yi Liu
    [J]. Green Chemical Engineering, 2021, 2 (01) : 14 - 16
  • [8] Design of metal-organic framework membranes towards ultimate gas separation
    Sun, Yanwei
    Liu, Yi
    [J]. GREEN CHEMICAL ENGINEERING, 2021, 2 (01) : 14 - 16
  • [9] Gas Separation via Hybrid Metal-Organic Framework/Polymer Membranes
    Shi, Yanshu
    Liang, Bin
    Lin, Rui-Biao
    Zhang, Chen
    Chen, Banglin
    [J]. TRENDS IN CHEMISTRY, 2020, 2 (03): : 254 - 269
  • [10] Molecular dynamics simulations of metal-organic frameworks as membranes for gas mixtures separation
    Cabrales-Navarro, Fredy A.
    Gomez-Ballesteros, Jose L.
    Balbuena, Perla B.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2013, 428 : 241 - 250