Crop Type Classification Using Fusion of Sentinel-1 and Sentinel-2 Data: Assessing the Impact of Feature Selection, Optical Data Availability, and Parcel Sizes on the Accuracies

被引:79
|
作者
Orynbaikyzy, Aiym [1 ,2 ]
Gessner, Ursula [1 ]
Mack, Benjamin
Conrad, Christopher [2 ]
机构
[1] German Aerosp Ctr DLR, German Remote Sensing Data Ctr DFD, Muenchner Str 20, D-82234 Wessling, Germany
[2] Martin Luther Univ Halle Wittenberg, Inst Geosci & Geog, Von Seckendorff Pl 4, D-06120 Halle, Germany
关键词
optical-SAR synergy; crop mapping; group-wise forward feature selection; interpretable machine learning; decision fusion; feature stacking; AGRICULTURE; LANDSAT; INDEXES; RADAR; SAR;
D O I
10.3390/rs12172779
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Crop type classification using Earth Observation (EO) data is challenging, particularly for crop types with similar phenological growth stages. In this regard, the synergy of optical and Synthetic-Aperture Radar (SAR) data enables a broad representation of biophysical and structural information on target objects, enhancing crop type mapping. However, the fusion of multi-sensor dense time-series data often comes with the challenge of high dimensional feature space. In this study, we (1) evaluate how the usage of only optical, only SAR, and their fusion affect the classification accuracy; (2) identify the combination of which time-steps and feature-sets lead to peak accuracy; (3) analyze misclassifications based on the parcel size, optical data availability, and crops' temporal profiles. Two fusion approaches were considered and compared in this study: feature stacking and decision fusion. To distinguish the most relevant feature subsets time- and variable-wise, grouped forward feature selection (gFFS) was used. gFFS allows focusing analysis and interpretation on feature sets of interest like spectral bands, vegetation indices (VIs), or data sensing time rather than on single features. This feature selection strategy leads to better interpretability of results while substantially reducing computational expenses. The results showed that, in contrast to most other studies, SAR datasets outperform optical datasets. Similar to most other studies, the optical-SAR combination outperformed single sensor predictions. No significant difference was recorded between feature stacking and decision fusion. Random Forest (RF) appears to be robust to high feature space dimensionality. The feature selection did not improve the accuracies even for the optical-SAR feature stack with 320 features. Nevertheless, the combination of RF feature importance and time- and variable-wise gFFS rankings in one visualization enhances interpretability and understanding of the features' relevance for specific classification tasks. For example, by enabling the identification of features that have high RF feature importance values but are, in their information content, correlated with other features. This study contributes to the growing domain of interpretable machine learning.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Sentinel-1 and Sentinel-2 Data Fusion for Urban Change Detection Using a Dual Stream U-Net
    Hafner, Sebastian
    Nascetti, Andrea
    Azizpour, Hossein
    Ban, Yifang
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [42] An improved fusion of Landsat-7/8, Sentinel-2, and Sentinel-1 data for monitoring alfalfa: Implications for crop remote sensing
    Chen, Jiang
    Zhang, Zhou
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 124
  • [43] Evaluation of different approaches to the fusion of Sentinel-1 SAR data and Resourcesat 2 LISS III optical data for use in crop classification
    Neetu
    Ray, Shibendu Shankar
    REMOTE SENSING LETTERS, 2020, 11 (12) : 1157 - 1166
  • [44] Combination of Sentinel-1 and Sentinel-2 Data for Tree Species Classification in a Central European Biosphere Reserve
    Lechner, Michael
    Dostalova, Alena
    Hollaus, Markus
    Atzberger, Clement
    Immitzer, Markus
    REMOTE SENSING, 2022, 14 (11)
  • [45] Classification scheme for mapping wetland herbaceous plant communities using time series Sentinel-1 and Sentinel-2 data
    Zhang L.
    Luo W.
    Zhang H.
    Yin X.
    Li B.
    National Remote Sensing Bulletin, 2023, 27 (06) : 6 - 19
  • [46] Hierarchical classification for improving parcel-scale crop mapping using time-series Sentinel-1 data
    Zhou, Ya'nan
    Zhu, Weiwei
    Li, Feng
    Gao, Jianwei
    Chen, Yuehong
    Xin, Zhang
    Luo, Jiancheng
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 369
  • [47] Synergy of Sentinel-1 and Sentinel-2 Imagery for Crop Classification Based on DC-CNN
    Zhang, Kaixin
    Yuan, Da
    Yang, Huijin
    Zhao, Jianhui
    Li, Ning
    REMOTE SENSING, 2023, 15 (11)
  • [48] Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data
    Chauhan, Sugandh
    Darvishzadeh, Roshanak
    Lu, Yi
    Boschetti, Mirco
    Nelson, Andrew
    REMOTE SENSING OF ENVIRONMENT, 2020, 243 (243)
  • [49] Seasonal monitoring of biochemical variables in natural rangelands using Sentinel-1 and Sentinel-2 data
    Rapiya, Monde
    Ramoelo, Abel
    Truter, Wayne
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (14) : 4737 - 4763
  • [50] Irrigation Mapping on Two Contrasted Climatic Contexts Using Sentinel-1 and Sentinel-2 Data
    Elwan, Ehsan
    Le Page, Michel
    Jarlan, Lionel
    Baghdadi, Nicolas
    Brocca, Luca
    Modanesi, Sara
    Dari, Jacopo
    Quintana Segui, Pere
    Zribi, Mehrez
    WATER, 2022, 14 (05)