Balance Optimization Subset Selection (BOSS): An Alternative Approach for Causal Inference with Observational Data

被引:26
|
作者
Nikolaev, Alexander G. [1 ]
Jacobson, Sheldon H. [2 ]
Cho, Wendy K. Tam [3 ,4 ,5 ]
Sauppe, Jason J. [2 ]
Sewell, Edward C. [6 ]
机构
[1] SUNY Buffalo, Dept Ind & Syst Engn, Buffalo, NY 14260 USA
[2] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Polit Sci, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Stat, Urbana, IL 61801 USA
[5] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[6] Southern Illinois Univ Edwardsville, Dept Math & Stat, Edwardsville, IL 62026 USA
基金
美国国家科学基金会;
关键词
PROPENSITY SCORE; MULTIVARIATE; BIAS;
D O I
10.1287/opre.1120.1118
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Scientists in all disciplines attempt to identify and document causal relationships. Those not fortunate enough to be able to design and implement randomized control trials must resort to observational studies. To make causal inferences outside the experimental realm, researchers attempt to control for bias sources by postprocessing observational data. Finding the subset of data most conducive to unbiased or least biased treatment effect estimation is a challenging, complex problem. However, the rise in computational power and algorithmic sophistication leads to an operations research solution that circumvents many of the challenges presented by methods employed over the past 30 years.
引用
收藏
页码:398 / 412
页数:15
相关论文
共 50 条
  • [1] Complexity and Approximation Results for the Balance Optimization Subset Selection Model for Causal Inference in Observational Studies
    Sauppe, Jason J.
    Jacobson, Sheldon H.
    Sewell, Edward C.
    [J]. INFORMS JOURNAL ON COMPUTING, 2014, 26 (03) : 547 - 566
  • [2] Causal inference and observational data
    Ivan Olier
    Yiqiang Zhan
    Xiaoyu Liang
    Victor Volovici
    [J]. BMC Medical Research Methodology, 23
  • [3] Causal inference and observational data
    Olier, Ivan
    Zhan, Yiqiang
    Liang, Xiaoyu
    Volovici, Victor
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2023, 23 (01)
  • [4] Causal inference with observational data
    Nichols, Austin
    [J]. STATA JOURNAL, 2007, 7 (04): : 507 - 541
  • [5] Random Forests Approach for Causal Inference with Clustered Observational Data
    Suk, Youmi
    Kang, Hyunseung
    Kim, Jee-Seon
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2021, 56 (06) : 829 - 852
  • [6] An evolutionary algorithm for subset selection in causal inference models
    Cho, Wendy K. Tam
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2018, 69 (04) : 630 - 644
  • [7] Causal inference from observational data
    Listl, Stefan
    Juerges, Hendrik
    Watt, Richard G.
    [J]. COMMUNITY DENTISTRY AND ORAL EPIDEMIOLOGY, 2016, 44 (05) : 409 - 415
  • [8] Duality in balance optimization subset selection
    Kwon, Hee Youn
    Sauppe, Jason J.
    Jacobson, Sheldon H.
    [J]. ANNALS OF OPERATIONS RESEARCH, 2020, 289 (02) : 277 - 289
  • [9] Duality in balance optimization subset selection
    Hee Youn Kwon
    Jason J. Sauppe
    Sheldon H. Jacobson
    [J]. Annals of Operations Research, 2020, 289 : 277 - 289
  • [10] Optimal subset selection for causal inference using machine learning ensembles and particle swarm optimization
    Dhruv Sharma
    Christopher Willy
    John Bischoff
    [J]. Complex & Intelligent Systems, 2021, 7 : 41 - 59