Twelve limit cycles around a singular point in a planar cubic-degree polynomial system

被引:40
|
作者
Yu, Pei [1 ]
Tian, Yun [1 ]
机构
[1] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Hilbert's 16th problem; Cubic planar system; Center; Limit cycle; Bifurcation; Focus value; BIFURCATIONS; COMPUTATION;
D O I
10.1016/j.cnsns.2013.12.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of 12 small-amplitude limit cycles around a singular point in a planar cubic-degree polynomial system. Based on two previously developed cubic systems in the literature, which have been proved to exhibit 11 small-amplitude limit cycles, we applied a different method to show 11 limit cycles. Moreover, we show that one of the systems can actually have 12 small-amplitude limit cycles around a singular point. This is the best result so far obtained in cubic planar vector fields around a singular point. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:2690 / 2705
页数:16
相关论文
共 50 条
  • [21] Limit cycles of cubic polynomial differential systems with rational first integrals of degree 2
    Llibre, Jaume
    Lopes, Bruno D.
    de Moraes, Jaime R.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 250 : 887 - 907
  • [22] Seven large-amplitude limit cycles in a cubic polynomial system
    Liu, YR
    Huang, WT
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (02): : 473 - 485
  • [23] The center conditions and bifurcation of limit cycles at the infinity for a cubic polynomial system
    Zhang, Lina
    Liu, Yirong
    Jiang, Xuejiao
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (04) : 1360 - 1370
  • [24] Limit cycles in a class of switching system with a degenerate singular point
    Li, Feng
    Liu, Yuanyuan
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 92 : 86 - 90
  • [25] On Limit Cycles Surrounding a Singular Point
    Gaiko, Valery A.
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2012, 20 (03) : 329 - 337
  • [26] ALGEBRAIC LIMIT CYCLES OF PLANAR CUBIC SYSTEMS
    Volokitin, E. P.
    Cheresiz, V. M.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 2045 - 2054
  • [27] Linear estimate for the number of limit cycles of a perturbed cubic polynomial differential system
    Llibre, Jaume
    Wu, Hao
    Yu, Jiang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 419 - 432
  • [28] Explicit limit cycles of a cubic polynomial differential systems
    Bendjeddou, Ahmed
    Boukoucha, Rachid
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (01): : 77 - 85
  • [29] Limit cycles of a perturbed cubic polynomial differential center
    Buica, Adriana
    Llibre, Jaume
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 32 (03) : 1059 - 1069
  • [30] Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11
    Wang, S.
    Yu, P.
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (03) : 606 - 621