On finite element analysis of an inverse problem in elasticity

被引:6
|
作者
Nicholson, David W. [1 ]
机构
[1] Univ Cent Florida, Orlando, FL 32816 USA
关键词
finite element modelling; inverse modelling; matrix nonsingularity condition; mesh modification;
D O I
10.1080/17415977.2012.668677
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This investigation concerns an inverse problem modelled by the finite element method. For a given mesh and set of physical properties, even though a well-posed direct problem possesses a unique solution in classical linear elasticity, variational arguments establish that a corresponding inverse problem may not. Furthermore, even when the inverse problem admits a unique solution when modelled 'exactly' using the classical linear theory of elasticity, an unfortunate mesh choice may cause the finite element model of the inverse problem to fail to do so. The current investigation introduces a simple matrix nonsingularity criterion assuring that the finite element model possesses a unique solution. An apparently new and readily computed numerical test is introduced to verify satisfaction of the criterion. Examples are given illustrating the effectiveness of the criterion and its application to mesh design.
引用
收藏
页码:735 / 748
页数:14
相关论文
共 50 条
  • [21] Finite element approximation of the elasticity spectral problem on curved domains
    Hernandez, Erwin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (02) : 452 - 458
  • [22] A new finite element method for inverse problems in structural analysis: application to atherosclerotic plaque elasticity reconstruction
    Bouvier, Adeline
    Deleaval, Flavien
    Doyley, Marvin M.
    Tacheau, Antoine
    Finet, Gerard
    Le Floc'h, Simon
    Cloutier, Guy
    Pettigrew, Roderic I.
    Ohayon, Jacques
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2014, 17 : 16 - 17
  • [23] ON INVERSE PROBLEM IN ELASTICITY AND PLASTICITY
    FRANEK, A
    KRATOCHVIL, J
    TRAVNICEK, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (04): : T156 - T158
  • [24] INVERSE CRACK PROBLEM IN ELASTICITY
    FABRIKANT, VI
    ACTA MECHANICA, 1986, 61 (1-4) : 29 - 36
  • [25] RUBBER ELASTICITY MODELS FOR FINITE-ELEMENT ANALYSIS
    TABADDOR, F
    COMPUTERS & STRUCTURES, 1987, 26 (1-2) : 33 - 40
  • [26] RUBBER ELASTICITY MODELS FOR FINITE ELEMENT ANALYSIS.
    Tabaddor, Farhad
    1600, (26): : 1 - 2
  • [27] Experimental and finite element analysis of human skin elasticity
    Areias, PA
    Jorge, RMN
    Barbosa, JT
    Fernandes, AA
    Mascarenhas, T
    Oliveira, M
    Patrício, B
    2003 ADVANCES IN BIOENGINEERING, 2003, : 303 - 304
  • [28] A hybridized weak Galerkin finite element scheme for linear elasticity problem
    Zhao, Lidan
    Wang, Ruishu
    Zou, Yongkui
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 425
  • [29] Dual mixed finite element methods for the elasticity problem with Lagrange multipliers
    Boulaajine, L.
    Nicaise, S.
    Paquet, L.
    Rafilipojaona
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (01) : 234 - 260
  • [30] Finite Element Discretization Strategies for the Inverse Electrocardiographic (ECG) Problem
    Wang, Dafang
    Kirby, Robert M.
    Johnson, Chris R.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 2 - DIAGNOSTIC IMAGING, 2009, 25 : 729 - 732