On finite element analysis of an inverse problem in elasticity

被引:6
|
作者
Nicholson, David W. [1 ]
机构
[1] Univ Cent Florida, Orlando, FL 32816 USA
关键词
finite element modelling; inverse modelling; matrix nonsingularity condition; mesh modification;
D O I
10.1080/17415977.2012.668677
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This investigation concerns an inverse problem modelled by the finite element method. For a given mesh and set of physical properties, even though a well-posed direct problem possesses a unique solution in classical linear elasticity, variational arguments establish that a corresponding inverse problem may not. Furthermore, even when the inverse problem admits a unique solution when modelled 'exactly' using the classical linear theory of elasticity, an unfortunate mesh choice may cause the finite element model of the inverse problem to fail to do so. The current investigation introduces a simple matrix nonsingularity criterion assuring that the finite element model possesses a unique solution. An apparently new and readily computed numerical test is introduced to verify satisfaction of the criterion. Examples are given illustrating the effectiveness of the criterion and its application to mesh design.
引用
收藏
页码:735 / 748
页数:14
相关论文
共 50 条
  • [1] FINITE-ELEMENT ANALYSIS OF SOME INVERSE ELASTICITY PROBLEMS
    MANIATTY, A
    ZABARAS, N
    STELSON, K
    [J]. JOURNAL OF ENGINEERING MECHANICS-ASCE, 1989, 115 (06): : 1303 - 1317
  • [2] INHOMOGENEOUS INVERSE PROBLEM IN FINITE ELASTICITY
    FRANEK, A
    KRATOCHVIL, J
    TRAVNICEK, L
    [J]. JOURNAL OF ELASTICITY, 1984, 14 (04) : 363 - 372
  • [3] Comparative Analysis of the Finite Element Methods for the Elasticity Problem with Singularity
    Rukavishnikov, V. A.
    Rukavishnikova, E., I
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [4] Inverse Perturbation Method for Inverse Eigenvalue Problem Based on Finite Element Analysis
    苗玉彬
    刘成良
    曹其新
    李杰
    [J]. Journal of Donghua University(English Edition), 2004, (01) : 78 - 84
  • [5] Convergence analysis for finite element approximation to an inverse Cauchy problem
    Chakib, A.
    Nachaoui, A.
    [J]. INVERSE PROBLEMS, 2006, 22 (04) : 1191 - 1206
  • [6] A Mixed Finite Element Method for Elasticity Problem
    Elakkad, A.
    Bennani, M. A.
    Mekkaoui, J. E. L.
    Elkhalfi, A.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2013, 4 (02) : 161 - 166
  • [7] Mixed finite element method for the contact problem in elasticity
    Hua, DY
    Wang, LH
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (04) : 441 - 448
  • [8] The stabilized mixed finite element scheme of elasticity problem
    Ming-hao Li
    Dong-yang Shi
    Zhen-zhen Li
    [J]. Computational and Applied Mathematics, 2018, 37 : 2588 - 2604
  • [9] The stabilized mixed finite element scheme of elasticity problem
    Li, Ming-hao
    Shi, Dong-yang
    Li, Zhen-zhen
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 2588 - 2604
  • [10] Weighted finite element method for an elasticity problem with singularity
    V. A. Rukavishnikov
    S. G. Nikolaev
    [J]. Doklady Mathematics, 2013, 88 : 705 - 709