Molecular Evolution of piRNA and Transposon Control Pathways in Drosophila

被引:44
|
作者
Malone, C. D. [1 ]
Hannon, G. J. [1 ]
机构
[1] Cold Spring Harbor Lab, Howard Hughes Med Inst, Watson Sch Biol Sci, Cold Spring Harbor, NY 11724 USA
来源
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
PROGRAMMED GENOME REARRANGEMENTS; FREQUENTLY MUTATING CHARACTER; R HYBRID DYSGENESIS; DICER-LIKE PROTEIN; SMALL RNAS; GERM-LINE; MELANOGASTER; ELEMENTS; GYPSY; PIWI;
D O I
10.1101/sqb.2009.74.052
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mere prevalence and potential mobilization of transposable elements in eukaryotic genomes present challenges at both the organismal and population levels. Not only is transposition able to alter gene function and chromosomal structure, but loss of control over even a single active element in the germline can create an evolutionary dead end. Despite the dangers of coexistence, transposons and their activity have been shown to drive the evolution of gene function, chromosomal organization, and even population dynamics (Kazazian 2004). This implies that organisms have adopted elaborate means to balance both the positive and detrimental consequences of transposon activity. In this chapter, we focus on the fruit fly to explore some of the molecular clues into the long- and short-term adaptation to transposon colonization and persistence within eukaryotic genomes.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 50 条
  • [41] piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire
    Senti, Kirsten-Andre
    Jurczak, Daniel
    Sachidanandam, Ravi
    Brennecke, Julius
    GENES & DEVELOPMENT, 2015, 29 (16) : 1747 - 1762
  • [42] Transposon regulation in Drosophila: piRNA-producing P elements facilitate repression of hybrid dysgenesis by a P element that encodes a repressor polypeptide
    Michael J. Simmons
    Michael W. Thorp
    Jared T. Buschette
    Jordan R. Becker
    Molecular Genetics and Genomics, 2015, 290 : 127 - 140
  • [43] RNA Clamping by Vasa Assembles a piRNA Amplifier Complex on Transposon Transcripts
    Xiol, Jordi
    Spinelli, Pietro
    Laussmann, Maike A.
    Homolka, David
    Yang, Zhaolin
    Cora, Elisa
    Coute, Yohann
    Conn, Simon
    Kadlec, Jan
    Sachidanandam, Ravi
    Kaksonen, Marko
    Cusack, Stephen
    Ephrussi, Anne
    Pillai, Ramesh S.
    CELL, 2014, 157 (07) : 1698 - 1711
  • [44] MOLECULAR EVOLUTION OF DROSOPHILA METALLOTHIONEIN GENES
    LANGE, BW
    LANGLEY, CH
    STEPHAN, W
    GENETICS, 1990, 126 (04) : 921 - 932
  • [45] Molecular evolution at the decapentaplegic locus in Drosophila
    Newfeld, SJ
    Padgett, RW
    Findley, SD
    Richter, BG
    Sanicola, M
    deCuevas, M
    Gelbart, WM
    GENETICS, 1997, 145 (02) : 297 - 309
  • [46] Co-dependent Assembly of Drosophila piRNA Precursor Complexes and piRNA Cluster Heterochromatin
    Zhang, Gen
    Tu, Shikui
    Yu, Tianxiong
    Zhang, Xiao-Ou
    Parhad, Swapnil S.
    Weng, Zhiping
    Theurkauf, William E.
    CELL REPORTS, 2018, 24 (13): : 3413 - +
  • [47] Molecular Evolution of the Testis TAFs of Drosophila
    Li, Victor C.
    Davis, Jerel C.
    Lenkov, Kapa
    Bolival, Benjamin
    Fuller, Margaret T.
    Petrov, Dmitri A.
    MOLECULAR BIOLOGY AND EVOLUTION, 2009, 26 (05) : 1103 - 1116
  • [48] Molecular evolution of neuropeptides in the genus Drosophila
    Wegener, Christian
    Gorbashov, Anton
    GENOME BIOLOGY, 2008, 9 (08)
  • [49] Molecular Evolution of Phosphoprotein Phosphatases in Drosophila
    Miskei, Marton
    Adam, Csaba
    Kovacs, Laszlo
    Karanyi, Zsolt
    Dombradi, Viktor
    PLOS ONE, 2011, 6 (07):
  • [50] Molecular evolution of neuropeptides in the genus Drosophila
    Christian Wegener
    Anton Gorbashov
    Genome Biology, 9