Measuring Gaussian Rigidity Using Curved Substrates

被引:5
|
作者
Fonda, Piermarco [1 ,2 ]
Al-Izzi, Sami C. [3 ,4 ,5 ,6 ]
Giomi, Luca [2 ]
Turner, Matthew S. [7 ,8 ,9 ]
机构
[1] Max Planck Inst Colloids & Interfaces, Theory & Biosyst, Muhlenberg 1, D-14476 Potsdam, Germany
[2] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[3] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
[4] Univ New South Wales, EMBL Australia Node Single Mol Sci, Sydney, NSW 2052, Australia
[5] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England
[6] PSL Res Univ, Phys Chem Curie, CNRS, Inst Curie, F-75005 Paris, France
[7] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[8] Univ Warwick, Ctr Complex Sci, Coventry CV4 7AL, W Midlands, England
[9] Kyoto Univ, Dept Chem Engn, Kyoto 6158510, Japan
基金
英国工程与自然科学研究理事会;
关键词
LIPID RAFTS; CURVATURE; MEMBRANES; FLUCTUATIONS; CHOLESTEROL; BILAYERS; MODULUS; SHAPE;
D O I
10.1103/PhysRevLett.125.188002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Gaussian (saddle splay) rigidity of fluid membranes controls their equilibrium topology but is notoriously difficult to measure. In lipid mixtures, typical of living cells, linear interfaces separate liquid ordered (LO) from liquid disordered (LD) bilayer phases at subcritical temperatures. Here, we consider such membranes supported by curved substrates that thereby control the membrane curvatures. We show how spectral analysis of the fluctuations of the LO-LD interface provides a novel way of measuring the difference in Gaussian rigidity between the two phases. We provide a number of conditions for such interface fluctuations to be both experimentally measurable and sufficiently sensitive to the value of the Gaussian rigidity, while remaining in the perturbative regime of our analysis.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A Novel Phase Measuring Deflectometry Method Using a Curved Screen
    Fu, Yanjun
    Ma, Fuqing
    Jiang, Guangyu
    Peng, Yuhui
    Li, Hewu
    Liu, Zhihan
    Yang, Wenqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [22] Nucleation Work on Curved Substrates
    Kozisek, Zdenek
    Kral, Robert
    Zemenova, Petra
    METALS, 2023, 13 (11)
  • [23] Droplet splashing on curved substrates
    Sykes, Thomas C.
    Fudge, Ben D.
    Quetzeri-Santiago, Miguel A.
    Rafael Castrejon-Pita, J.
    Castrejon-Pita, Alfonso A.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 615 : 227 - 235
  • [24] Adhesion of vesicles to curved substrates
    Das, Sovan
    Du, Qiang
    PHYSICAL REVIEW E, 2008, 77 (01)
  • [25] The fabrication of submicron patterns on curved substrates using a polydimethylsiloxane film mould
    Choi, WM
    Park, OO
    NANOTECHNOLOGY, 2004, 15 (12) : 1767 - 1770
  • [26] Conjugacy and rigidity for nonpositively curved manifolds of higher rank
    Croke, CB
    Eberlein, P
    Kleiner, B
    TOPOLOGY, 1996, 35 (02) : 273 - 286
  • [27] Essential connectedness and the rigidity problem for Gaussian symmetrization
    Cagnetti, Filippo
    Colombo, Maria
    De Philippis, Guido
    Maggi, Francesco
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (02) : 395 - 439
  • [28] Entropy rigidity of negatively curved manifolds of finite volume
    M. Peigné
    A. Sambusetti
    Mathematische Zeitschrift, 2019, 293 : 609 - 627
  • [29] On the rigidity of discrete isometry groups of negatively curved spaces
    Hersonsky, S
    Paulin, F
    COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (03) : 349 - 388
  • [30] Rigidity of negatively curved geodesic orbit Finsler spaces
    Xu, Ming
    Deng, Shaoqiang
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (09) : 987 - 990