Entanglement in a class of multiqubit mixed states without multipartite tangles

被引:20
|
作者
Bai, Yan-Kui [1 ,2 ,3 ,4 ]
Ye, Ming-Yong [1 ,2 ,5 ]
Wang, Z. D. [1 ,2 ]
机构
[1] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China
[3] Hebei Normal Univ, Coll Phys Sci & Informat Engn, Shijiazhuang 050016, Hebei, Peoples R China
[4] Hebei Normal Univ, Hebei Adv Thin Films Lab, Shijiazhuang 050016, Hebei, Peoples R China
[5] Fujian Normal Univ, Sch Phys & Optoelect Technol, Fuzhou 350007, Peoples R China
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 06期
关键词
information theory; mixed state; quantum computing; quantum entanglement;
D O I
10.1103/PhysRevA.78.062325
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Based on quantum complementary relations (QCRs) and a purification scenario, we analyze a class of N-qubit mixed states that are entangled but do not have two-, and genuine three-, four-,...,N-qubit entanglements. It is shown that entanglement (one-tangle or negativity) in these mixed states is closely related to the QCR entanglement of their purified states. In particular, it is elaborated that when the mixed state does not have multipartite tangles (two- and higher tangles), its entanglement is actually a kind of genuine multipartite QCR entanglement between the system and its environment.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Computation of the geometric measure of entanglement for pure multiqubit states
    Chen, Lin
    Xu, Aimin
    Zhu, Huangjun
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [42] Exact entanglement cost of multiqubit bound entangled states
    Bandyopadhyay, S
    Roychowdhury, V
    PHYSICAL REVIEW A, 2005, 72 (02):
  • [43] Multiqubit systems: highly entangled states and entanglement distribution
    Borras, A.
    Plastino, A. R.
    Batle, J.
    Zander, C.
    Casas, M.
    Plastino, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (44) : 13407 - 13421
  • [44] Partial separability and entanglement criteria for multiqubit quantum states
    Seevinck, Michael
    Uffink, Jos
    PHYSICAL REVIEW A, 2008, 78 (03):
  • [45] Geometrical analysis and entanglement measure of symmetric multiqubit states
    Benzimoun, Bilal
    Daoud, Mohammed
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (08)
  • [46] Conditions for entanglement transformation between a class of multipartite pure states with generalized Schmidt decompositions
    Xin, Yu
    Duan, Runyao
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [47] Some entanglement features of highly entangled multiqubit states
    Borras, A.
    Casas, M.
    Plastino, A. R.
    Plastino, A.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 : 605 - 611
  • [48] Entanglement and measurement-induced nonlocality of mixed maximally entangled states in multipartite dynamics
    Wang, Li-Die
    Wang, Li-Tao
    Yang, Mou
    Xu, Jing-Zhou
    Wang, Z. D.
    Bai, Yan-Kui
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [49] Multipartite nonlocality without entanglement in many dimensions
    Niset, J.
    Cerf, N. J.
    PHYSICAL REVIEW A, 2006, 74 (05):
  • [50] Multipartite entanglement swapping and mechanical cluster states
    Ottaviani, Carlo
    Lupo, Cosmo
    Ferraro, Alessandro
    Paternostro, Mauro
    Pirandola, Stefano
    PHYSICAL REVIEW A, 2019, 99 (03)