Model-based co-clustering for ordinal data

被引:25
|
作者
Jacques, Julien [1 ,3 ]
Biernacki, Christophe [2 ,3 ]
机构
[1] Univ Lyon, ERIC EA 3083, Lyon, France
[2] Univ Lille, Lab Paul Painleve, UMR CNRS 8524, Lille, France
[3] Inria Lille Nord Europe, MODAL Team, Lille, France
关键词
Latent block model; EM algorithm; Gibbs sampler; MIXTURE MODEL;
D O I
10.1016/j.csda.2018.01.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A model-based co-clustering algorithm for ordinal data is presented. This algorithm relies on the latent block model embedding a probability distribution specific to ordinal data (the so-called BOS or Binary Ordinal Search distribution). Model inference relies on a Stochastic EM algorithm coupled with a Gibbs sampler, and the ICL-BIC criterion is used for selecting the number of co-clusters (or blocks). The main advantage of this ordinal dedicated co-clustering model is its parsimony, the interpretability of the co-cluster parameters (mode, precision) and the possibility to take into account missing data. Numerical experiments on simulated data show the efficiency of the inference strategy, and real data analyses illustrate the interest of the proposed procedure. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 50 条
  • [1] Model-based co-clustering for functional data
    Ben Slimen, Yosra
    Allio, Sylvain
    Jacques, Julien
    [J]. NEUROCOMPUTING, 2018, 291 : 97 - 108
  • [2] Model-based co-clustering for mixed type data
    Selosse, Margot
    Jacques, Julien
    Biernacki, Christophe
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [3] Co-clustering contaminated data: a robust model-based approach
    Fibbi, Edoardo
    Perrotta, Domenico
    Torti, Francesca
    Van Aelst, Stefan
    Verdonck, Tim
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (01) : 121 - 161
  • [4] Co-clustering contaminated data: a robust model-based approach
    Edoardo Fibbi
    Domenico Perrotta
    Francesca Torti
    Stefan Van Aelst
    Tim Verdonck
    [J]. Advances in Data Analysis and Classification, 2024, 18 : 121 - 161
  • [5] Model-based co-clustering for the effective handling of sparse data
    Ailem, Melissa
    Role, Francois
    Nadif, Mohamed
    [J]. PATTERN RECOGNITION, 2017, 72 : 108 - 122
  • [6] Model-based Co-clustering for High Dimensional Sparse Data
    Salah, Aghiles
    Rogovschi, Nicoleta
    Nadif, Mohamed
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 866 - 874
  • [7] Model-based Poisson co-clustering for Attributed Networks
    Riverain, Paul
    Fossier, Simon
    Nadif, Mohamed
    [J]. 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 703 - 710
  • [8] A Hierarchical Model-based Approach to Co-Clustering High-Dimensional Data
    Costa, Gianni
    Manco, Giuseppe
    Ortale, Riccardo
    [J]. APPLIED COMPUTING 2008, VOLS 1-3, 2008, : 886 - 890
  • [9] blockcluster: An R Package for Model-Based Co-Clustering
    Bhatia, Parmeet Singh
    Iovleff, Serge
    Govaert, Gerard
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (09): : 1 - 24
  • [10] Bayesian model-based clustering for longitudinal ordinal data
    Roy Costilla
    Ivy Liu
    Richard Arnold
    Daniel Fernández
    [J]. Computational Statistics, 2019, 34 : 1015 - 1038