More about 4-isosceles planar sets

被引:2
|
作者
Xu, CQ [1 ]
Ren, D
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
[2] Hebei Normal Univ, Math Dept, Shijiazhuang 050016, Peoples R China
关键词
D O I
10.1007/s00454-003-0825-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A finite planar set is k-isosceles for k greater than or equal to 3 if every k-point subset of the set contains a point equidistant from the other two. In [1] Fishburn obtains several important results about isosceles planar sets and poses a series of conjectures and open questions. We disprove Conjecture 1 in [1] and provide another 34 nonsimilar 4-isosceles 8-point planar sets which answer one of the open questions in [1] negatively.
引用
收藏
页码:655 / 663
页数:9
相关论文
共 50 条
  • [31] SETS OF POINTS, GENERATED BY A PAIR OF ISOSCELES TRIANGLES WITH A SPECIAL LOCATION OF THEIR BASES
    Grozdev, Sava
    Nenkov, Veselin
    MATHEMATICS AND INFORMATICS, 2018, 61 (04): : 378 - 395
  • [32] Periodic brake orbits in the planar isosceles three-body problem
    Chen, Nai-Chia
    NONLINEARITY, 2013, 26 (10) : 2875 - 2898
  • [33] AN EQUIPARTITION OF PLANAR SETS
    SCHULMAN, LJ
    DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (03) : 257 - 266
  • [34] Covering Planar Sets
    A. D. Tolmachev
    D. S. Protasov
    Doklady Mathematics, 2021, 104 : 196 - 199
  • [35] Hyperconvex planar sets
    Buter, J
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1938, 41 (6/10): : 756 - 762
  • [36] Covering planar sets
    Filimonov, V. P.
    SBORNIK MATHEMATICS, 2010, 201 (08) : 1217 - 1248
  • [37] Quadrangulations of planar sets
    Toussaint, G
    ALGORITHMS AND DATA STRUCTURES, 1995, 955 : 218 - 227
  • [38] Covering Planar Sets
    Tolmachev, A. D.
    Protasov, D. S.
    DOKLADY MATHEMATICS, 2021, 104 (01) : 196 - 199
  • [39] Bifurcations in the mass ratio of the planar isosceles three-body problem
    Chesley, S
    Zare, K
    DYNAMICS OF SMALL BODIES IN THE SOLAR SYSTEM: A MAJOR KEY TO SOLAR SYSTEM STUDIES, 1999, 522 : 413 - 424
  • [40] THE TRIPLE COLLISION MANIFOLD, IN THE ISOSCELES CASE OF THE PLANAR 3 BODY PROBLEM
    IRIGOYEN, JM
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1980, 290 (22): : 489 - 492